qpms/notes/conventions.md

84 lines
5.7 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

VSWF conventions
================
In general, the (transversal) VSWFs can be defined using (some) vector spherical harmonics
as follows: \f[
\wfm\pr{k\vect r}_{lm} = \sphbes_l(kr) \vshrot_{lm} (\uvec r),\\
\wfe\pr{k\vect r}_{lm} = \frac{\frac{\ud}{\ud(kr)}\pr{kr\sphbes_l(kr)}}{kr} \vshgrad_{lm}(\uvec r)
+ \sqrt{l(l+1)} \frac{\sphbes_l(kr)}{kr} \vshrad_{lm}(\uvec r),
\f]
where at this point, we don't have much expectations regarding the
normalisations and phases of the
"rotational", "gradiental" and "radial" vector spherical harmonics
\f$ \vshrot, \vshgrad, \vshrad \f$, and the waves can be of whatever "direction"
(regular, outgoing, etc.) depending on the kind of the spherical Bessel function
\f$ \sphbes \f$.
We only require that the spherical harmonic degree \f$ l \f$
is what it is supposed to be. The meaning of the order $m$ may vary depending
on convention. Moreover, in order to \f$ \wfe \f$ be a valid "electric" multipole wave,
there is a fixed relation between radial and gradiental vector spherical harmonics
(more on that later).
Let us define the "dual" vector spherical harmonics \f$ \vshD_{\tau lm} \f$ as follows:
\f[
\int_\Omega \vsh_{\tau lm} (\uvec r) \cdot \vshD_{\tau' l'm} (\uvec r) \, \ud \Omega
= \delta_{\tau', \tau}\delta_{l',l} \delta_{m',m}
\f]
where the \f$ \cdot \f$ symbol here means the bilinear form of the vector components
without complex conjugation (which is included in the "duality" mapping).
For the sake of non-ambiguity, let us define the "canonical" associated Legendre polynomials
as in \cite DLMF TODO exact refs:
\f[
\rawLeg{l}{0}(x) = \frac{1}{2^n n!} \frac{\ud^n}{\ud x^n} \pr{x^2-1}^n , \\
\rawLeg{l}{m}(x) = \pr{1-x^2}^{m/2} \frac{\ud^m}{\ud x^m} \rawLeg{l}{0},\quad\abs{x}\le 1, m \ge 0, \\
\rawLeg{l}{m}(x) = (-1)^\abs{m} \frac{(l-\abs{m})!}{(l+\abs{m})!} \rawLeg{l}{\abs{m}},
\quad \abs{x} \le 1, m < 0.
\f]
Literature convention table
---------------------------
| Source | VSWF definition | E/M interrelations | VSWF norm | CS Phase | Field expansion | Radiated power | Notes |
|--- |--- |--- |--- |--- |--- |--- |--- |
| Kristensson I \cite kristensson_spherical_2014 | \f[ \wfkcreg, \wfkcout= \dots \f] | \f[
\wfkcreg_{1lm} = \frac{1}{k}\nabla\times\wfkcreg_{2lm}, \\
\wfkcreg_{2lm} = \frac{1}{k}\nabla\times\wfkcreg_{1lm},
\f] and analogously for outgoing waves \f$ \wfkcout \f$, eq. (2.8) onwards. | | Yes, in the spherical harmonics definition, cf. sect. D.2. | \f[
\vect E = k \sqrt{\eta_0\eta} \sum_n \left( \wckcreg_n \wfkcreg_n + \wckcout_n \wfkcout_n \right),
\\
\vect H = \frac{k \sqrt{\eta_0\eta}}{i\eta_0\eta} \sum_n \left( \wckcreg_n \wfkcreg_n + \wckcout_n \wfkcout_n \right),
\f] but for plane wave expansion \cite kristensson_spherical_2014 sect. 2.5 K. uses a different definition (same as in Kristensson II). | \f[
P = \frac{1}{2} \sum_n \left( \abs{\wckcout_n}^2 +\Re \left(\wckcout_n\wckcreg_n^{*}\right)\right)
\f] | The \f$ \wckcreg, \wckcout \f$ coefficients have dimension \f$ \sqrt{\mathrm{W}} \f$. |
| Kristensson II \cite kristensson_scattering_2016 | \f[ \wfkrreg, \wfkrout= \dots \f] | \f[
\nabla\times\wfkrreg_{\tau n} = k\wfkrreg_{\overline{\tau} n},
\f] eq. (7.7) and analogously for outgoing waves \f$ \wfkrout \f$. | | | \f[
\vect E = \sum_n \left( \wckrreg_n \wfkrreg_n + \wckrout_n \wfkrout_n \right),
\\
\vect H = \frac{1}{i\eta_0\eta} \sum_n \left( \wckrreg_n \wfkrreg_n + \wckrout_n \wfkrout_n \right)
\f] | \f[
P = \frac{1}{2k^2\eta_0\eta} \sum_n \left( \abs{\wckrout_n}^2 +\Re \left(\wckrout_n\wckrreg_n^{*}\right)\right)
\f] | The \f$ \wckrreg, \wckrout \f$ coefficients have dimension \f$ \mathrm{V/m} \f$. |
| Reid \cite reid_electromagnetism_2016 | | \f[
\nabla\times\wfr_{lmM} = -ik\wfr_{lmN}, \\ \nabla\times\wfr_{lmN} = +ik\wfr_{lmM}.
\f] | | | \f[
\vect E = \sum_\alpha \pr{ \wcrreg_\alpha \wfrreg_\alpha + \wcrout_\alpha \wfrout_\alpha }, \\
\vect H = \frac{1}{Z_0Z^r} \sum_\alpha \pr{ \wcrreg_\alpha \sigma_\alpha\wfrreg_\overline{\alpha} +
\wcrout_\alpha \sigma_\alpha\wfrout_\overline{\alpha}},
\f] where \f$ \sigma_{lmM} = +1, \sigma_{lmN}=-1, \overline{lmM}=lmM, \overline{lmN}=lmM, \f$ cf. eq. (6). The notation is not extremely consistent throughout Reid's memo. | | |
| Taylor \cite taylor_optical_2011 | \f[
\wfet_{mn}^{(j)} = \frac{n(n+1)}{kr}\sqrt{\frac{2n+1}{4\pi}\frac{\left(n-m\right)!}{\left(n+m\right)!}}P_{n}^{m}\left(\cos\theta\right)e^{im\phi}z_{n}^{j}\left(kr\right)\uvec{r} \\
+\left[\tilde{\tau}_{mn}\left(\cos\theta\right)\uvec{\theta}+i\tilde{\pi}_{mn}\left(\cos\theta\right)\uvec{\phi}\right]e^{im\phi}\frac{1}{kr}\frac{\ud\left(kr\,z_{n}^{j}\left(kr\right)\right)}{\ud(kr)}, \\
\wfmt_{mn}^{(j)} = \left[i\tilde{\pi}_{mn}\left(\cos\theta\right)\uvec{\theta}-\tilde{\tau}_{mn}\left(\cos\theta\right)\uvec{\phi}\right]e^{im\phi}z_{n}^{j}\left(kr\right)
\f] | | \f[
\int_{S(kr)} \wfmt_{mn}^{(j)} \wfmt_{m'n'}^{(j)}\,\ud S = n(n+1) \abs{z_n^{(j)}}^2 \delta_{m,m'}\delta_{n,n'} ,\\
\int_{S(kr)} \wfet_{mn}^{(j)} \wfet_{m'n'}^{(j)}\,\ud S =
\pr{\pr{n(n+1)}^2 \abs{\frac{z_n^{(j)}}{kr}}^2 + n(n+1)\abs{\frac{1}{kr}\frac{\ud}{\ud(kr)}\pr{kr z_n^{(j)}}} } \delta_{m,m'}\delta_{n,n'} ,
\f] cf. \cite taylor_optical_2011, eqs. (2.4041). I suspect that this is also wrong and \f$\delta_{m,m'}\f$ should be replaced with \f$\delta_{m,-m'}\f$. | | \f[
\vect E = \sum_{mn} \pr{-i \pr{\wcetreg_{mn}\wfetreg_{mn} + \wcmtreg_{mn}\wfmtreg{mn}} +i \pr{\wcetout_{mn}\wfetout_{mn} + \wcmtout_{mn}\wfmtout_{mn}}}, \\
\vect H = n_{ext}\sum_{mn} \pr{- \pr{\wcmtreg_{mn}\wfetreg_{mn} + \wcetreg_{mn}\wfmtreg{mn}} + \pr{\wcmtout_{mn}\wfetout_{mn} + \wcetout_{mn}\wfmtout_{mn}}},
\f] | | Different sign for regular/scattered waves! Also WTF are the units of \f$ n_{ext} \f$? The whole definition seems rather inconsistent. |