qpms/qpms/qpms_p.py

1218 lines
45 KiB
Python
Raw Normal View History

import numpy as np
from qpms_c import *
ň = np.newaxis
import scipy
from scipy.constants import epsilon_0 as ε_0, c, pi as π, e, hbar as , mu_0 as μ_0
eV = e
from scipy.special import lpmn, lpmv, sph_jn, sph_yn, poch
from scipy.misc import factorial
import math
import cmath
import quaternion, spherical_functions as sf # because of the Wigner matrices
import sys, time
# Coordinate transforms for arrays of "arbitrary" shape
def cart2sph(cart,axis=-1):
if (cart.shape[axis] != 3):
raise ValueError("The converted array has to have dimension 3"
" along the given axis")
[x, y, z] = np.split(cart,3,axis=axis)
r = np.linalg.norm(cart,axis=axis,keepdims=True)
r_zero = np.logical_not(r)
θ = np.arccos(z/(r+r_zero))
φ = np.arctan2(y,x) # arctan2 handles zeroes correctly itself
return np.concatenate((r,θ,φ),axis=axis)
def sph2cart(sph, axis=-1):
if (sph.shape[axis] != 3):
raise ValueError("The converted array has to have dimension 3"
" along the given axis")
[r,θ,φ] = np.split(sph,3,axis=axis)
sinθ = np.sin(θ)
x = r * sinθ * np.cos(φ)
y = r * sinθ * np.sin(φ)
z = r * np.cos(θ)
return np.concatenate((x,y,z),axis=axis)
def sph_loccart2cart(loccart, sph, axis=-1):
"""
Transformation of vector specified in local orthogonal coordinates
(tangential to spherical coordinates basis r̂,θ̂,φ̂) to global cartesian
coordinates (basis x̂,ŷ,ẑ)
SLOW FOR SMALL ARRAYS
Parameters
----------
loccart: ... TODO
the transformed vector in the local orthogonal coordinates
sph: ... TODO
the point (in spherical coordinates) at which the locally
orthogonal basis is evaluated
Returns
-------
output: ... TODO
The coordinates of the vector in global cartesian coordinates
"""
if (loccart.shape[axis] != 3):
raise ValueError("The converted array has to have dimension 3"
" along the given axis")
[r,θ,φ] = np.split(sph,3,axis=axis)
sinθ = np.sin(θ)
cosθ = np.cos(θ)
sinφ = np.sin(φ)
cosφ = np.cos(φ)
#x = r * sinθ * cosφ
#y = r * sinθ * sinφ
#z = r * cosθ
r̂x = sinθ * cosφ
r̂y = sinθ * sinφ
r̂z = cosθ
θ̂x = cosθ * cosφ
θ̂y = cosθ * sinφ
θ̂z = -sinθ
φ̂x = -sinφ
φ̂y = cosφ
φ̂z = np.zeros(φ̂y.shape)
r̂ = np.concatenate((r̂x,r̂y,r̂z),axis=axis)
θ̂ = np.concatenate((θ̂x,θ̂y,θ̂z),axis=axis)
φ̂ = np.concatenate((φ̂x,φ̂y,φ̂z),axis=axis)
[inr̂,inθ̂,inφ̂] = np.split(loccart,3,axis=axis)
out=inr̂*r̂+inθ̂*θ̂+inφ̂*φ̂
return out
def sph_loccart_basis(sph, sphaxis=-1, cartaxis=None):
"""
Returns the local cartesian basis in terms of global cartesian basis.
sphaxis refers to the original dimensions
TODO doc
"""
if(cartaxis is None):
cartaxis = sph.ndim # default to last axis
[r,θ,φ] = np.split(sph,3,axis=sphaxis)
sinθ = np.sin(θ)
cosθ = np.cos(θ)
sinφ = np.sin(φ)
cosφ = np.cos(φ)
#x = r * sinθ * cosφ
#y = r * sinθ * sinφ
#z = r * cosθ
r̂x = sinθ * cosφ
r̂y = sinθ * sinφ
r̂z = cosθ
θ̂x = cosθ * cosφ
θ̂y = cosθ * sinφ
θ̂z = -sinθ
φ̂x = -sinφ
φ̂y = cosφ
φ̂z = np.zeros(φ̂y.shape)
#r̂ = np.concatenate((r̂x,r̂y,r̂z),axis=axis)
#θ̂ = np.concatenate((θ̂x,θ̂y,θ̂z),axis=axis)
#φ̂ = np.concatenate((φ̂x,φ̂y,φ̂z),axis=axis)
x = np.expand_dims(np.concatenate((r̂x,θ̂x,φ̂x), axis=sphaxis),axis=cartaxis)
y = np.expand_dims(np.concatenate((r̂y,θ̂y,φ̂y), axis=sphaxis),axis=cartaxis)
z = np.expand_dims(np.concatenate((r̂z,θ̂z,φ̂z), axis=sphaxis),axis=cartaxis)
out = np.concatenate((x,y,z),axis=cartaxis)
return out
def lpy(nmax, z):
"""
Associated legendre function and its derivatative at z in the 'y-indexing'.
(Without Condon-Shortley phase AFAIK.)
NOT THOROUGHLY TESTED
Parameters
----------
nmax: int
The maximum order to which the Legendre functions will be evaluated..
z: float
The point at which the Legendre functions are evaluated.
output: (P_y, dP_y) TODO
y-indexed legendre polynomials and their derivatives
"""
pmn_plus, dpmn_plus = lpmn(nmax, nmax, z)
pmn_minus, dpmn_minus = lpmn(-nmax, nmax, z)
nelem = nmax * nmax + 2*nmax
P_y = np.empty((nelem), dtype=np.float_)
dP_y = np.empty((nelem), dtype=np.float_)
mn_p_y, mn_n_y = get_y_mn_unsigned(nmax)
mn_plus_mask = (mn_p_y >= 0)
mn_minus_mask = (mn_n_y >= 0)
#print( mn_n_y[mn_minus_mask])
P_y[mn_p_y[mn_plus_mask]] = pmn_plus[mn_plus_mask]
P_y[mn_n_y[mn_minus_mask]] = pmn_minus[mn_minus_mask]
dP_y[mn_p_y[mn_plus_mask]] = dpmn_plus[mn_plus_mask]
dP_y[mn_n_y[mn_minus_mask]] = dpmn_minus[mn_minus_mask]
return (P_y, dP_y)
def vswf_yr(pos_sph,nmax,J=1):
"""
Normalized vector spherical wavefunctions $\widetilde{M}_{mn}^{j}$,
$\widetilde{N}_{mn}^{j}$ as in [1, (2.40)].
Parameters
----------
pos_sph : np.array(dtype=float, shape=(someshape,3))
The positions where the spherical vector waves are to be
evaluated. The last axis corresponds to the individual
points (r,θ,φ). The radial coordinate r is dimensionless,
assuming that it has already been multiplied by the
wavenumber.
nmax : int
The maximum order to which the VSWFs are evaluated.
Returns
-------
output : np.array(dtype=complex, shape=(someshape,nmax*nmax + 2*nmax,3))
Spherical vector wave functions evaluated at pos_sph,
in the local basis (r̂,θ̂,φ̂). The last indices correspond
to m, n (in the ordering given by mnindex()), and basis
vector index, respectively.
[1] Jonathan M. Taylor. Optical Binding Phenomena: Observations and
Mechanisms.
"""
#mi, ni = mnindex(nmax)
#nelems = nmax*nmax + 2*nmax
## TODO Remove these two lines in production:
#if(len(mi) != nelems):
# raise ValueError("This is very wrong.")
## Pre-calculate the associated Legendre function
#Prmn, dPrmn = lpmn(nmax,nmax,)
## Normalized funs π̃, τ̃
#π̃ =
pass
from scipy.special import sph_jn, sph_yn
def _sph_zn_1(n,z):
return sph_jn(n,z)
def _sph_zn_2(n,z):
return sph_yn(n,z)
def _sph_zn_3(n,z):
besj=sph_jn(n,z)
besy=sph_yn(n,z)
return (besj[0] + 1j*besy[0],besj[1] + 1j*besy[1])
def _sph_zn_4(n,z):
besj=sph_jn(n,z)
besy=sph_yn(n,z)
return (besj[0] - 1j*besy[0],besj[1] - 1j*besy[1])
_sph_zn = [_sph_zn_1,_sph_zn_2,_sph_zn_3,_sph_zn_4]
# computes bessel/hankel functions for orders from 0 up to n; drops
# the derivatives which are also included in scipy.special.sph_jn/yn
def zJn(n, z, J=1):
return _sph_zn[J-1](n=n,z=z)
# The following 4 funs have to be refactored, possibly merged
# FIXME: this can be expressed simply as:
# $$ -\frac{1}{2}\sqrt{\frac{2n+1}{4\pi}n\left(n+1\right)}(\delta_{m,1}+\delta_{m,-1}) $$
def π̃_zerolim(nmax): # seems OK
"""
lim_{θ 0-} π̃(cos θ)
"""
my, ny = get_mn_y(nmax)
nelems = len(my)
π̃_y = np.zeros((nelems))
plus1mmask = (my == 1)
minus1mmask = (my == -1)
pluslim = -ny*(1+ny)/2
minuslim = 0.5
π̃_y[plus1mmask] = pluslim[plus1mmask]
π̃_y[minus1mmask] = - minuslim
prenorm = np.sqrt((2*ny + 1)*factorial(ny-my)/(4*π*factorial(ny+my)))
π̃_y = prenorm * π̃_y
return π̃_y
def π̃_pilim(nmax): # Taky OK, jen to možná není kompatibilní se vzorečky z mathematiky
"""
lim_{θ π+} π̃(cos θ)
"""
my, ny = get_mn_y(nmax)
nelems = len(my)
π̃_y = np.zeros((nelems))
plus1mmask = (my == 1)
minus1mmask = (my == -1)
pluslim = (-1)**ny*ny*(1+ny)/2
minuslim = 0.5*(-1)**ny
π̃_y[plus1mmask] = pluslim[plus1mmask]
π̃_y[minus1mmask] = minuslim[minus1mmask]
prenorm = np.sqrt((2*ny + 1)*factorial(ny-my)/(4*π*factorial(ny+my)))
π̃_y = prenorm * π̃_y
return π̃_y
# FIXME: this can be expressed simply as
# $$ -\frac{1}{2}\sqrt{\frac{2n+1}{4\pi}n\left(n+1\right)}(\delta_{m,1}-\delta_{m,-1}) $$
def τ̃_zerolim(nmax):
"""
lim_{θ 0-} τ̃(cos θ)
"""
p0 = π̃_zerolim(nmax)
my, ny = get_mn_y(nmax)
minus1mmask = (my == -1)
p0[minus1mmask] = -p0[minus1mmask]
return p0
def τ̃_pilim(nmax):
"""
lim_{θ π+} τ̃(cos θ)
"""
t = π̃_pilim(nmax)
my, ny = get_mn_y(nmax)
plus1mmask = (my == 1)
t[plus1mmask] = -t[plus1mmask]
return t
def get_π̃τ̃_y1(θ,nmax):
# TODO replace with the limit functions (below) when θ approaches
# the extreme values at about 1e-6 distance
"""
(... TODO)
"""
if (abs(θ)<1e-6):
return (π̃_zerolim(nmax),τ̃_zerolim(nmax))
if (abs(θ-π)<1e-6):
return (π̃_pilim(nmax),τ̃_pilim(nmax))
my, ny = get_mn_y(nmax)
nelems = len(my)
Py, dPy = lpy(nmax, math.cos(θ))
prenorm = np.sqrt((2*ny + 1)*factorial(ny-my)/(4*π*factorial(ny+my)))
π̃_y = prenorm * my * Py / math.sin(θ) # bacha, možné dělení nulou
τ̃_y = prenorm * dPy * (- math.sin(θ)) # TADY BACHA!!!!!!!!!! * (- math.sin(pos_sph[1])) ???
return (π̃_y,τ̃_y)
def vswf_yr1(pos_sph,nmax,J=1):
"""
As vswf_yr, but evaluated only at single position (i.e. pos_sph has
to have shape=(3))
"""
if (pos_sph[1].imag or pos_sph[2].imag):
raise ValueError("The angles for the spherical wave functions can not be complex")
kr = pos_sph[0] if pos_sph[0].imag else pos_sph[0].real # To supress the idiotic warning in scipy.special.sph_jn
θ = pos_sph[1].real
φ = pos_sph[2].real
my, ny = get_mn_y(nmax)
Py, dPy = lpy(nmax, math.cos(θ))
nelems = nmax*nmax + 2*nmax
# TODO Remove these two lines in production:
if(len(Py) != nelems or len(my) != nelems):
raise ValueError("This is very wrong.")
prenorm = np.sqrt((2*ny + 1)*factorial(ny-my)/(4*π*factorial(ny+my)))
if (abs(θ)<1e-6): # Ošetření limitního chování derivací Leg. fcí
π̃_y=π̃_zerolim(nmax)
τ̃_y=τ̃_zerolim(nmax)
elif (abs(θ-π)<1e-6):
π̃_y=π̃_pilim(nmax)
τ̃_y=τ̃_pilim(nmax)
else:
π̃_y = prenorm * my * Py / math.sin(θ)
τ̃_y = prenorm * dPy * (- math.sin(θ)) # TADY BACHA!!!!!!!!!! * (- math.sin(pos_sph[1])) ???
z_n, dz_n = zJn(nmax, kr, J=J)
z_y = z_n[ny]
dz_y = dz_n[ny]
eimf_y = np.exp(1j*my*φ) # zbytečné opakování my, lepší by bylo to spočítat jednou a vyindexovat
M̃_y = np.zeros((nelems,3), dtype=np.complex_)
M̃_y[:,1] = 1j * π̃_y * eimf_y * z_y
M̃_y[:,2] = - τ̃_y * eimf_y * z_y
Ñ_y = np.empty((nelems,3), dtype=np.complex_)
Ñ_y[:,0] = (ny*(ny+1)/kr) * prenorm * Py * eimf_y * z_y
Ñradial_fac_y = z_y / kr + dz_y
Ñ_y[:,1] = τ̃_y * eimf_y * Ñradial_fac_y
Ñ_y[:,2] = 1j*π̃_y * eimf_y * Ñradial_fac_y
return(M̃_y, Ñ_y)
#def plane_E_y(nmax):
# """
# The E_mn normalization factor as in [1, (3)] WITHOUT the E_0 factor,
# y-indexed
#
# (... TODO)
#
# References
# ----------
# [1] Jonathan M. Taylor. Optical Binding Phenomena: Observations and
# Mechanisms. FUCK, I MADE A MISTAKE: THIS IS FROM 7U
# """
# my, ny = get_mn_y(nmax)
# return 1j**ny * np.sqrt((2*ny+1)*factorial(ny-my) /
# (ny*(ny+1)*factorial(ny+my))
# )
def zplane_pq_y(nmax, betap = 0):
"""
The z-propagating plane wave expansion coefficients as in [1, (1.12)]
(... TODO)
"""
my, ny = get_mn_y(nmax)
U_y = 4*π * 1j**ny / (ny * (ny+1))
π̃_y = π̃_zerolim(nmax)
τ̃_y = τ̃_zerolim(nmax)
# fixme co je zač ten e_θ ve vzorečku? (zde neimplementováno)
p_y = U_y*(τ̃_y*math.cos(betap) - 1j*math.sin(betap)*π̃_y)
q_y = U_y*(π̃_y*math.cos(betap) - 1j*math.sin(betap)*τ̃_y)
return (p_y, q_y)
#import warnings
def plane_pq_y(nmax, kdir_cart, E_cart):
"""
The plane wave expansion coefficients for any direction kdir_cart
and amplitude vector E_cart (which might be complex, depending on
the phase and polarisation state). If E_cart and kdir_cart are
not orthogonal, the result should correspond to the k-normal part
of E_cart.
"""
if np.iscomplexobj(kdir_cart):
warnings.warn("The direction vector for the plane wave coefficients should be real. I am discarding the imaginary part now.")
kdir_cart = kdir_cart.real
k_sph = cart2sph(kdir_cart)
π̃_y, τ̃_y = get_π̃τ̃_y1(k_sph[1], nmax)
my, ny = get_mn_y(nmax)
U_y = 4*π * 1j**ny / (ny * (ny+1))
θ̂ = sph_loccart2cart(np.array([0,1,0]), k_sph, axis=-1)
φ̂ = sph_loccart2cart(np.array([0,0,1]), k_sph, axis=-1)
p_y = np.sum( U_y[:,ň]
* np.conj(np.exp(1j*my[:,ň]*k_sph[2]) * (
θ̂[ň,:]*τ̃_y[:,ň] + 1j*φ̂[ň,:]*π̃_y[:,ň]))
* E_cart[ň,:],
axis=-1)
q_y = np.sum( U_y[:,ň]
* np.conj(np.exp(1j*my[:,ň]*k_sph[2]) * (
θ̂[ň,:]*π̃_y[:,ň] + 1j*φ̂[ň,:]*τ̃_y[:,ň]))
* E_cart[ň,:],
axis=-1)
return (p_y, q_y)
# Functions copied from scattering_xu, additionaly normalized
from py_gmm.gmm import vec_trans as vc
def q_max(m,n,μ,ν):
return min(n,ν,(n+ν-abs(m+μ))/2)
# returns array with indices corresponding to q
# argument q does nothing for now
def a_q(m,n,μ,ν,q = None):
qm=q_max(m,n,μ,ν)
res, err= vc.gaunt_xu(m,n,μ,ν,qm)
if(err):
print("m,n,μ,ν,qm = ",m,n,μ,ν,qm)
raise ValueError('Something bad in the fortran subroutine gaunt_xu happened')
return res
# All arguments are single numbers (for now)
# ZDE VYCHÁZEJÍ DIVNÁ ZNAMÉNKA
def Ã(m,n,μ,ν,kdlj,θlj,φlj,r_ge_d,J):
exponent=(math.lgamma(2*n+1)-math.lgamma(n+2)+math.lgamma(2*ν+3)-math.lgamma(ν+2)
+math.lgamma(n+ν+m-μ+1)-math.lgamma(n-m+1)-math.lgamma(ν+μ+1)
+math.lgamma(n+ν+1) - math.lgamma(2*(n+ν)+1))
presum = math.exp(exponent)
presum = presum * np.exp(1j*(μ-m)*φlj) * (-1)**m * 1j**(ν+n) / (4*n)
qmax = math.floor(q_max(-m,n,μ,ν)) #nemá tu být +m?
q = np.arange(qmax+1, dtype=int)
# N.B. -m !!!!!!
a1q = a_q(-m,n,μ,ν) # there is redundant calc. of qmax
ã1q = a1q / a1q[0]
p = n+ν-2*q
if(r_ge_d):
J = 1
zp = zJn(n+ν,kdlj,J)[0][p]
Pp = lpmv(μ-m,p,math.cos(θlj))
summandq = (n*(n+1) + ν*(ν+1) - p*(p+1)) * (-1)**q * ã1q * zp * Pp
# Taylor normalisation v2, proven to be equivalent (NS which is better)
prenormratio = 1j**(ν-n) * math.sqrt(((2*ν+1)/(2*n+1))* math.exp(
math.lgamma(n+m+1)-math.lgamma(n-m+1)+math.lgamma(ν-μ+1)-math.lgamma(ν+μ+1)))
presum = presum / prenormratio
# Taylor normalisation
#prenormmn = math.sqrt((2*n + 1)*math.factorial(n-m)/(4*π*factorial(n+m)))
#prenormμν = math.sqrt((2*ν + 1)*math.factorial(ν-μ)/(4*π*factorial(ν+μ)))
#presum = presum * prenormμν / prenormmn
return presum * np.sum(summandq)
# ZDE OPĚT JINAK ZNAMÉNKA než v Xu (J. comp. phys 127, 285)
def B̃(m,n,μ,ν,kdlj,θlj,φlj,r_ge_d,J):
exponent=(math.lgamma(2*n+3)-math.lgamma(n+2)+math.lgamma(2*ν+3)-math.lgamma(ν+2)
+math.lgamma(n+ν+m-μ+2)-math.lgamma(n-m+1)-math.lgamma(ν+μ+1)
+math.lgamma(n+ν+2) - math.lgamma(2*(n+ν)+3))
presum = math.exp(exponent)
presum = presum * np.exp(1j*(μ-m)*φlj) * (-1)**m * 1j**(ν+n+1) / (
(4*n)*(n+1)*(n+m+1))
Qmax = math.floor(q_max(-m,n+1,μ,ν))
q = np.arange(Qmax+1, dtype=int)
if (μ == ν): # it would disappear in the sum because of the factor (ν-μ) anyway
ã2q = 0
else:
a2q = a_q(-m-1,n+1,μ+1,ν)
ã2q = a2q / a2q[0]
a3q = a_q(-m,n+1,μ,ν)
ã3q = a3q / a3q[0]
#print(len(a2q),len(a3q))
p = n+ν-2*q
if(r_ge_d):
J = 1
zp_ = zJn(n+1+ν,kdlj,J)[0][p+1] # je ta +1 správně?
Pp_ = lpmv(μ-m,p+1,math.cos(θlj))
summandq = ((2*(n+1)*(ν-μ)*ã2q
-(-ν*(ν+1) - n*(n+3) - 2*μ*(n+1)+p*(p+3))* ã3q)
*(-1)**q * zp_ * Pp_)
# Taylor normalisation v2, proven to be equivalent
prenormratio = 1j**(ν-n) * math.sqrt(((2*ν+1)/(2*n+1))* math.exp(
math.lgamma(n+m+1)-math.lgamma(n-m+1)+math.lgamma(ν-μ+1)-math.lgamma(ν+μ+1)))
presum = presum / prenormratio
## Taylor normalisation
#prenormmn = math.sqrt((2*n + 1)*math.factorial(n-m)/(4*π*factorial(n+m)))
#prenormμν = math.sqrt((2*ν + 1)*math.factorial(ν-μ)/(4*π*factorial(ν+μ)))
#presum = presum * prenormμν / prenormmn
return presum * np.sum(summandq)
# In[7]:
# Material parameters
def ε_drude(ε_inf, ω_p, γ_p, ω): # RELATIVE permittivity, of course
return ε_inf - ω_p*ω_p/(ω*(ω+1j*γ_p))
# In[8]:
# Mie scattering
def mie_coefficients(a, nmax, #ω, ε_i, ε_e=1, J_ext=1, J_scat=3
k_i, k_e, μ_i=1, μ_e=1, J_ext=1, J_scat=3):
"""
FIXME test the magnetic case
TODO description
RH concerns the N ("electric") part, RV the M ("magnetic") part
#
Parameters
----------
a : float
Diameter of the sphere.
nmax : int
To which order (inc. nmax) to compute the coefficients.
ω : float
Frequency of the radiation
ε_i, ε_e, μ_i, μ_e : complex
Relative permittivities and permeabilities of the sphere (_i)
and the environment (_e)
MAGNETIC (μ_i, μ_e != 1) CASE UNTESTED AND PROBABLY BUGGY
J_ext, J_scat : 1, 2, 3, or 4 (must be different)
Specifies the species of the Bessel/Hankel functions in which
the external incoming (J_ext) and scattered (J_scat) fields
are represented. 1,2,3,4 correspond to j,y,h(1),h(2), respectively.
The returned coefficients are always with respect to the decomposition
of the "external incoming" wave.
Returns
-------
RV == a/p, RH == b/q, TV = d/p, TH = c/q
TODO
what does it return on index 0???
FIXME permeabilities
"""
# permittivities are relative!
# cf. worknotes
#print("a, nmax, ε_m, ε_b, ω",a, nmax, ε_m, ε_b, ω)
#k_i = cmath.sqrt(ε_i*μ_i) * ω / c
x_i = k_i * a
#k_e = cmath.sqrt(ε_e*μ_e) * ω / c
x_e = k_e * a
#print("Mie: phase at radius: x_i",x_i,"x_e",x_e)
m = k_i/k_e#cmath.sqrt(ε_i*μ_i/(ε_e*μ_e))
# We "need" the absolute permeabilities for the final formula
# This is not the absolute wave impedance, because only their ratio
# ηi/ηe is important for getting the Mie coefficients.
η_inv_i = k_i / μ_i
η_inv_e = k_e / μ_e
#print("k_m, x_m,k_b,x_b",k_m, x_m,k_b,x_b)
zi, ži = zJn(nmax, x_i, J=1)
#Pi = (zi * x_i)
#Di = (zi + x_i * ži) / Pi # Vzoreček Taylor (2.9)
#ži = zi + x_i * ži
ze, že = zJn(nmax, x_e, J=J_ext)
#Pe = (ze * x_e)
#De = (ze + x_e * že) / Pe # Vzoreček Taylor (2.9)
#že = ze + x_e * že
zs, žs = zJn(nmax, x_e, J=J_scat)
#Ps = (zs * x_e)
#Ds = (zs + x_e * žs) / Ps # Vzoreček Taylor (2.9)
#žs = zs + x_e * zs
#RH = (μ_i*zi*že - μ_e*ze*ži) / (μ_i*zi*žs - μ_e*zs*ži)
#RV = (μ_e*m*m*zi*že - μ_i*ze*ži) / (μ_e*m*m*zi*žs - μ_i*zs*ži)
#TH = (μ_i*ze*žs - μ_i*zs*že) / (μ_i*zi*žs - μ_e*zs*ži)
#TV = (μ_i*m*ze*žs - μ_i*m*zs*že) / (μ_e*m*m*zi*žs - μ_i*zs*ži)
ži = zi/x_i+ži
žs = zs/x_e+žs
že = ze/x_e+že
RV = -((-η_inv_i * že * zi + η_inv_e * ze * ži)/(-η_inv_e * ži * zs + η_inv_i * zi * žs))
RH = -((-η_inv_e * že * zi + η_inv_i * ze * ži)/(-η_inv_i * ži * zs + η_inv_e * zi * žs))
TV = -((-η_inv_e * že * zs + η_inv_e * ze * žs)/( η_inv_e * ži * zs - η_inv_i * zi * žs))
TH = -(( η_inv_e * že * zs - η_inv_e * ze * žs)/(-η_inv_i * ži * zs + η_inv_e * zi * žs))
return (RH, RV, TH, TV)
def G_Mie_scat_precalc_cart_new(source_cart, dest_cart, RH, RV, a, nmax, k_i, k_e, μ_i=1, μ_e=1, J_ext=1, J_scat=3):
"""
Implementation according to Kristensson, page 50
My (Taylor's) basis functions are normalized to n*(n+1), whereas Kristensson's to 1
TODO: check possible -1 factors (cf. Kristensson's dagger notation)
"""
my, ny = get_mn_y(nmax)
nelem = len(my)
#source to origin
source_sph = cart2sph(source_cart)
source_sph[0] = k_e * source_sph[0]
dest_sph = cart2sph(dest_cart)
dest_sph[0] = k_e * dest_sph[0]
if(dest_sph[0].real >= source_sph[0].real):
lo_sph = source_sph
hi_sph = dest_sph
else:
lo_sph = dest_sph
hi_sph = source_sph
lo_sph = source_sph
hi_sph = dest_sph
M̃lo_y, Ñlo_y = vswf_yr1(lo_sph,nmax,J=J_scat)
lo_loccart_basis = sph_loccart_basis(lo_sph, sphaxis=-1, cartaxis=None)
M̃lo_cart_y = np.sum(M̃lo_y[:,:,ň]*lo_loccart_basis[ň,:,:],axis=-2)
Ñlo_cart_y = np.sum(Ñlo_y[:,:,ň]*lo_loccart_basis[ň,:,:],axis=-2)
M̃hi_y, Ñhi_y = vswf_yr1(hi_sph,nmax,J=J_scat)#J_scat
hi_loccart_basis = sph_loccart_basis(hi_sph, sphaxis=-1, cartaxis=None)
M̃hi_cart_y = np.sum(M̃hi_y[:,:,ň]*hi_loccart_basis[ň,:,:],axis=-2)
Ñhi_cart_y = np.sum(Ñhi_y[:,:,ň]*hi_loccart_basis[ň,:,:],axis=-2)
G_y = (RH[ny][:,ň,ň] * M̃lo_cart_y[:,:,ň].conj() * M̃hi_cart_y[:,ň,:] +
RV[ny][:,ň,ň] * Ñlo_cart_y[:,:,ň].conj() * Ñhi_cart_y[:,ň,:]) / (ny * (ny+1))[:,ň,ň]
return 1j* k_e*np.sum(G_y,axis=0)
def G_Mie_scat_precalc_cart(source_cart, dest_cart, RH, RV, a, nmax, k_i, k_e, μ_i=1, μ_e=1, J_ext=1, J_scat=3):
"""
r1_cart (destination), r2_cart (source) and the result are in cartesian coordinates
the result indices are in the source-destination order
TODO
"""
my, ny = get_mn_y(nmax)
nelem = len(my)
#source to origin
so_sph = cart2sph(-source_cart)
kd_so = k_e * so_sph[0]
θ_so = so_sph[1]
φ_so = so_sph[2]
# Decomposition of the source N_0,1, N_-1,1, and N_1,1 in the nanoparticle center
p_0 = np.empty((nelem), dtype=np.complex_)
q_0 = np.empty((nelem), dtype=np.complex_)
p_minus = np.empty((nelem), dtype=np.complex_)
q_minus = np.empty((nelem), dtype=np.complex_)
p_plus = np.empty((nelem), dtype=np.complex_)
q_plus = np.empty((nelem), dtype=np.complex_)
for y in range(nelem):
m = my[y]
n = ny[y]
p_0[y] = Ã(m,n, 0,1,kd_so,θ_so,φ_so,False,J=J_scat)
q_0[y] = B̃(m,n, 0,1,kd_so,θ_so,φ_so,False,J=J_scat)
p_minus[y] = Ã(m,n,-1,1,kd_so,θ_so,φ_so,False,J=J_scat)
q_minus[y] = B̃(m,n,-1,1,kd_so,θ_so,φ_so,False,J=J_scat)
p_plus[y] = Ã(m,n, 1,1,kd_so,θ_so,φ_so,False,J=J_scat)
q_plus[y] = B̃(m,n, 1,1,kd_so,θ_so,φ_so,False,J=J_scat)
a_0 = RV[ny] * p_0
b_0 = RH[ny] * q_0
a_plus = RV[ny] * p_plus
b_plus = RH[ny] * q_plus
a_minus = RV[ny] * p_minus
b_minus = RH[ny] * q_minus
orig2dest_sph = cart2sph(dest_cart)
orig2dest_sph[0] = k_e*orig2dest_sph[0]
M_dest_y, N_dest_y = vswf_yr1(orig2dest_sph,nmax,J=J_scat)
# N.B. these are in the local cartesian coordinates (r̂,θ̂,φ̂)
N_dest_0 = np.sum(a_0[:,ň] * N_dest_y, axis=-2)
M_dest_0 = np.sum(b_0[:,ň] * M_dest_y, axis=-2)
N_dest_plus = np.sum(a_plus[:,ň] * N_dest_y, axis=-2)
M_dest_plus = np.sum(b_plus[:,ň] * M_dest_y, axis=-2)
N_dest_minus = np.sum(a_minus[:,ň]* N_dest_y, axis=-2)
M_dest_minus = np.sum(b_minus[:,ň]* M_dest_y, axis=-2)
prefac = math.sqrt(1/(4*3*π))#/ε_0
G_sourcez_dest = prefac * (N_dest_0+M_dest_0)
G_sourcex_dest = prefac * (N_dest_minus+M_dest_minus-N_dest_plus-M_dest_plus)/math.sqrt(2)
G_sourcey_dest = prefac * (N_dest_minus+M_dest_minus+N_dest_plus+M_dest_plus)/(1j*math.sqrt(2))
G_source_dest = np.array([G_sourcex_dest, G_sourcey_dest, G_sourcez_dest])
# To global cartesian coordinates:
G_source_dest = sph_loccart2cart(G_source_dest, sph=orig2dest_sph, axis=-1)
return G_source_dest
def G_Mie_scat_cart(source_cart, dest_cart, a, nmax, k_i, k_e, μ_i=1, μ_e=1, J_ext=1, J_scat=3):
"""
TODO
"""
RH, RV, TH, TV = mie_coefficients(a=a, nmax=nmax, k_i=k_i, k_e=k_e, μ_i=μ_i, μ_e=μ_e, J_ext=J_ext, J_scat=J_scat)
return G_Mie_scat_precalc_cart_new(source_cart, dest_cart, RH, RV, a, nmax, k_i, k_e, μ_i, μ_e, J_ext, J_scat)
#TODO
def cross_section_Mie_precalc():
pass
def cross_section_Mie(a, nmax, k_i, k_e, μ_i, μ_e,):
pass
# In[9]:
# From PRL 112, 253601 (1)
def Grr_Delga(nmax, a, r, k, ε_m, ε_b):
om = k * c
z = (r-a)/a
g0 = om*cmath.sqrt(ε_b)/(6*c*π)
n = np.arange(1,nmax+1)
s = np.sum( (n+1)**2 * (ε_m-ε_b) / ((1+z)**(2*n+4) * (ε_m + ((n+1)/n)*ε_b)))
return (g0 + s * c**2/(4*π*om**2*ε_b*a**3))
# TODOs
# ====
#
# Rewrite the functions zJn, lpy in (at least simulated) universal manner.
# Then universalise the rest
#
# Implement the actual multiple scattering
#
# Test if the decomposition of plane wave works also for absorbing environment (complex k).
# From PRL 112, 253601 (1)
def Grr_Delga(nmax, a, r, k, ε_m, ε_b):
om = k * c
z = (r-a)/a
g0 = om*cmath.sqrt(ε_b)/(6*c*π)
n = np.arange(1,nmax+1)
s = np.sum( (n+1)**2 * (ε_m-ε_b) / ((1+z)**(2*n+4) * (ε_m + ((n+1)/n)*ε_b)))
return (g0 + s * c**2/(4*π*om**2*ε_b*a**3))
def G0_dip_1(r_cart,k):
"""
Free-space dyadic Green's function in terms of the spherical vector waves.
FIXME
"""
sph = cart2sph(r_cart*k)
pfz = 0.32573500793527994772 # 1./math.sqrt(3.*π)
pf = 0.23032943298089031951 # 1./math.sqrt(6.*π)
M1_y, N1_y = vswf_yr1(sph,nmax = 1,J=3)
loccart_basis = sph_loccart_basis(sph, sphaxis=-1, cartaxis=None)
N1_cart = np.sum(N1_y[:,:,ň]*loccart_basis[ň,:,:],axis=-2)
coeffs_cart = np.array([[pf,-1j*pf,0.],[0.,0.,pfz],[-pf,-1j*pf,0.]]).conj()
return 1j*k*np.sum(coeffs_cart[:,:,ň]*N1_cart[:,ň,:],axis=0)/2.
# Free-space dyadic Green's functions from RMP 70, 2, 447 =: [1]
# (The numerical value is correct only at the regular part, i.e. r != 0)
def _P(z):
return (1-1/z+1/(z*z))
def _Q(z):
return (-1+3/z-3/(z*z))
# [1, (9)] FIXME The sign here is most likely wrong!!!
def G0_analytical(r #cartesian!
, k):
I=np.identity(3)
rn = sph_loccart2cart(np.array([1.,0.,0.]), cart2sph(r), axis=-1)
rnxrn = rn[...,:,ň] * rn[...,ň,:]
r = np.linalg.norm(r, axis=-1)
#print(_P(1j*k*r).shape,_Q(1j*k*r).shape, rnxrn.shape, I.shape)
return ((-np.exp(1j*k*r)/(4*π*r))[...,ň,ň] *
(_P(1j*k*r)[...,ň,ň]*I
+_Q(1j*k*r)[...,ň,ň]*rnxrn
))
# [1, (11)]
def G0L_analytical(r, k):
I=np.identity(3)
rn = sph_loccart2cart(np.array([1.,0.,0.]), cart2sph(r), axis=-1)
rnxrn = rn[...,:,ň] * rn[...,ň,:]
r = np.linalg.norm(r, axis=-1)
return (I-3*rnxrn)/(4*π*k*k*r**3)[...,ň,ň]
# [1,(10)]
def G0T_analytical(r, k):
return G0_analytical(r,k) - G0L_analytical(r,k)
def G0_sum_1_slow(source_cart, dest_cart, k, nmax):
my, ny = get_mn_y(nmax)
nelem = len(my)
RH = np.full((nelem),1)
RV = RH
return G_Mie_scat_precalc_cart(source_cart, dest_cart, RH, RV, a=0.001, nmax=nmax, k_i=1, k_e=k, μ_i=1, μ_e=1, J_ext=1, J_scat=3)
# Transformations of spherical bases
def WignerD_mm(l, quat):
"""
Calculates Wigner D matrix (as an numpy (2*l+1,2*l+1)-shaped array)
for order l, and a rotation given by quaternion quat.
This represents the rotation of spherical vector basis
TODO doc
"""
indices = np.array([ [l,i,j] for i in range(-l,l+1) for j in range(-l,l+1)])
Delems = sf.Wigner_D_element(quat, indices).reshape(2*l+1,2*l+1)
return Delems
def WignerD_mm_fromvector(l, vect):
"""
TODO doc
"""
return WignerD_mm(l, quaternion.from_rotation_vector(vect))
def WignerD_yy(lmax, quat):
"""
TODO doc
"""
my, ny = get_mn_y(lmax)
Delems = np.zeros((len(my),len(my)),dtype=complex)
b_in = 0
e_in = None
for l in range(1,lmax+1):
e_in = b_in + 2*l+1
Delems[b_in:e_in,b_in:e_in] = WignerD_mm(l, quat)
b_in = e_in
return Delems
def WignerD_yy_fromvector(lmax, vect):
"""
TODO doc
"""
return WignerD_yy(lmax, quaternion.from_rotation_vector(vect))
def xflip_yy(lmax):
"""
TODO doc
xflip = δ(m + m') δ(l - l')
(i.e. ones on the (m' m) antidiagonal
"""
my, ny = get_mn_y(lmax)
elems = np.zeros((len(my),len(my)),dtype=int)
b_in = 0
e_in = None
for l in range(1,lmax+1):
e_in = b_in + 2*l+1
elems[b_in:e_in,b_in:e_in] = np.eye(2*l+1)[::-1,:]
b_in = e_in
return elems
def yflip_yy(lmax):
"""
TODO doc
yflip = rot(z,pi/2) * xflip * rot(z,-pi/2)
= δ(m + m') δ(l - l') * (-1)**m
"""
my, ny = get_mn_y(lmax)
elems = xflip_yy(lmax)
elems[(my % 2)==1] = elems[(my % 2)==1] * -1 # Obvious sign of tiredness (this is correct but ugly; FIXME)
return elems
def zflip_yy(lmax):
"""
TODO doc
zflip = (-1)^(l+m)
"""
my, ny = get_mn_y(lmax)
elems = np.zeros((len(my), len(my)), dtype=int)
b_in = 0
e_in = None
for l in range(1,lmax+1):
e_in = b_in + 2*l+1
elems[b_in:e_in,b_in:e_in] = np.diag([(-1)**i for i in range(e_in-b_in)])
b_in = e_in
return elems
def parity_yy(lmax):
"""
Parity operator (flip in x,y,z)
parity = (-1)**l
"""
my, ny = get_mn_y(lmax)
return np.diag((-1)**ny)
# BTW parity (xyz-flip) is simply (-1)**ny
#----------------------------------------------------#
# Loading T-matrices from scuff-tmatrix output files #
#----------------------------------------------------#
# We don't really need this particular function anymore, but...
def _scuffTMatrixConvert_EM_01(EM):
#print(EM)
if (EM == b'E'):
return 0
elif (EM == b'M'):
return 1
else:
return None
def loadScuffTMatrices(fileName):
"""
TODO doc
"""
μm = 1e-6
table = np.genfromtxt(fileName,
converters={1: _scuffTMatrixConvert_EM_01, 4: _scuffTMatrixConvert_EM_01},
dtype=[('freq', '<f8'), ('outc_type', '<i8'), ('outc_l', '<i8'), ('outc_m', '<i8'),
('inc_type', '<i8'), ('inc_l', '<i8'), ('inc_m', '<i8'), ('Treal', '<f8'), ('Timag', '<f8')]
)
lMax=np.max(table['outc_l'])
my,ny = get_mn_y(lMax)
nelem = len(ny)
TMatrix_sz = nelem**2 * 4 # number of rows for each frequency: nelem * nelem spherical incides, 2 * 2 E/M types
freqs_weirdunits = table['freq'][::TMatrix_sz].copy()
freqs = freqs_weirdunits * c / μm
# The iteration in the TMatrix file goes in this order (the last one iterates fastest, i.e. in the innermost loop):
# freq outc_l outc_m outc_type inc_l inc_m inc_type
# The l,m mapping is the same as is given by my get_mn_y function, so no need to touch that
TMatrices_tmp_real = table['Treal'].reshape(len(freqs), nelem, 2, nelem, 2)
TMatrices_tmp_imag = table['Timag'].reshape(len(freqs), nelem, 2, nelem, 2)
# There are two přoblems with the previous matrices. First, we want to have the
# type indices first, so we want a shape (len(freqs), 2, nelem, 2, nelem) as in the older code.
# Second, M-waves come first, so they have now 0-valued index, and E-waves have 1-valued index,
# which we want to be inverted.
TMatrices = np.empty((len(freqs),2,nelem,2,nelem),dtype=complex)
for inc_type in [0,1]:
for outc_type in [0,1]:
TMatrices[:,1-outc_type,:,1-inc_type,:] = TMatrices_tmp_real[:,:,outc_type,:,inc_type]+1j*TMatrices_tmp_imag[:,:,outc_type,:,inc_type]
# IMPORTANT: now we are going from Reid's/Kristensson's/Jackson's/whoseever convention to Taylor's convention
TMatrices[:,:,:,:,:] = TMatrices[:,:,:,:,:] * np.sqrt(ny*(ny+1))[ň,ň,ň,ň,:] / np.sqrt(ny*(ny+1))[ň,ň,:,ň,ň]
return (TMatrices, freqs, freqs_weirdunits, lMax)
# misc tensor maniputalion
def apply_matrix_left(matrix, tensor, axis):
"""
TODO doc
Apply square matrix to a given axis of a tensor, so that the result retains the shape
of the original tensor. The summation goes over the second index of the matrix and the
given tensor axis.
"""
tmp = np.tensordot(matrix, tensor, axes=(-1,axis))
return np.moveaxis(tmp, 0, axis)
####################
# Array simulations
####################
def nelem2lMax(nelem):
"""
Auxiliary inverse function to nelem(lMax) = (lMax + 2) * lMax. Returns 0 if
it nelem does not come from positive integer lMax.
"""
lMax = round(math.sqrt(1+nelem) - 1)
if ((lMax < 1) or ((lMax + 2) * lMax != nelem)):
return 0
else:
return lMax
def scatter_plane_wave(omega, epsilon_b, positions, Tmatrices, k_dirs, E_0s, #saveto = None
):
"""
Solves the plane wave linear scattering problem for a structure of "non-touching" particles
for one frequency and arbitrary number K of incoming plane waves.
Parameters
----------
omega : positive number
The frequency of the field.
epsilon_b : complex number
Permittivity of the background medium (which has to be isotropic).
positions : (N,3)-shaped real array
Cartesian positions of the particles.
TMatrices : (N,2,nelem,2,nelem) or compatible
The T-matrices in the "Taylor convention" describing the scattering on a single nanoparticle.
If all the particles are identical and equally oriented, only one T-matrix can be given.
nelems = (lMax + 2) * lMax, where lMax is the highest multipole order to which the scattering
is calculated.
k_dirs : (K,3)-shaped real array or compatible
The direction of the incident field wave vector, normalized to one.
E_0s : (K,3)-shaped complex array or compatible
The electric intensity amplitude of the incident field.
Returns
-------
ab : (K, N, 2, nelem)-shaped complex array
The a (electric wave), b (magnetic wave) coefficients of the outgoing field for each particle
# Fuck this, it will be wiser to make separate function to calculate those from ab:
# sigma_xxx : TODO (K, 2, nelem)
# TODO partial (TODO which?) cross-section for each type of outgoing waves, summed over all
# nanoparticles (total cross section is given by the sum of this.)
"""
nelem = TMatrices.shape[-1]
if ((nelem != TMatrices.shape[-3]) or (2 != TMatrices.shape[-2]) or (2 != TMatrices.shape[-4])):
raise ValueError('The T-matrices must be of shape (N, 2, nelem, 2, nelem) but are of shape %s' % (str(TMatrices.shape),))
lMax = nelem2lMax(nelem)
if not lMax:
raise ValueError('The "nelem" dimension of T-matrix has invalid value (%d).' % nelem)
# TODO perhaps more checks.
raise Error('Not implemented.')
pass
import warnings
def scatter_plane_wave_rectarray(omega, epsilon_b, xN, yN, xd, yd, TMatrices, k_dirs, E_0s,
return_pq_0 = False, return_pq= False, return_xy = False, watch_time = False):
"""
Solves the plane wave linear scattering problem for a rectangular array of particles
for one frequency and arbitrary number K of incoming plane waves.
Parameters
----------
omega : positive number
The frequency of the field.
epsilon_b : complex number
Permittivity of the background medium (which has to be isotropic).
xN, yN : positive integers
Particle numbers in the x and y dimensions
xd, yd : positive numbers
Periodicities in the x and y direction
TMatrices : (xN, yN,2,nelem,2,nelem) or compatible or (2,nelem,2,nelem)
The T-matrices in the "Taylor convention" describing the scattering on a single nanoparticle.
If all the particles are identical and equally oriented, only one T-matrix can be given.
nelems = (lMax + 2) * lMax, where lMax is the highest multipole order to which the scattering
is calculated.
Electric wave index is 0, magnetic wave index is 1.
k_dirs : (K,3)-shaped real array or compatible
The direction of the incident field wave vector, normalized to one.
E_0s : (K,3)-shaped complex array or compatible
The electric intensity amplitude of the incident field.
return_pq_0 : bool
Return also the multipole decomposition coefficients of the incoming plane wave.
return_pq : bool NOT IMPLEMENTED
Return also the multipole decomposition coefficients of the field incoming to each
particle (inc. the field scattered from other particles.
return_xy : bool
Return also the cartesian x, y positions of the particles.
watch_time : bool
Inform about the progress on stderr
Returns
-------
ab : (K, xN, yN, 2, nelem)-shaped complex array
The a (electric wave), b (magnetic wave) coefficients of the outgoing field for each particle.
If none of return_pq or return_xy is set, the array is not enclosed in a tuple.
pq_0 : (K, xN, yn, 2, nelem)-shaped complex array
The p_0 (electric wave), b_0 (magnetic wave) coefficients of the incoming plane wave for each particle.
pq : (K, xN, yN, 2, nelem)-shaped complex array NOT IMPLEMENTED
The p (electric wave), q (magnetic wave) coefficients of the total exciting field
for each particle (including the field scattered from other particles)
x, y : (xN, yN)-shaped real array
The x,y positions of the nanoparticles.
"""
if (watch_time):
timec = time.time()
print('%.4f: running scatter_plane_wave_rectarray' % timec, file = sys.stderr)
sys.stderr.flush()
nelem = TMatrices.shape[-1]
if ((nelem != TMatrices.shape[-3]) or (2 != TMatrices.shape[-2]) or (2 != TMatrices.shape[-4])):
raise ValueError('The T-matrices must be of shape (N, 2, nelem, 2, nelem) but are of shape %s' % (str(TMatrices.shape),))
lMax = nelem2lMax(nelem)
if not lMax:
raise ValueError('The "nelem" dimension of T-matrix has invalid value (%d).' % nelem)
# TODO perhaps more checks.
k_out = omega * math.sqrt(epsilon_b) / c # wave number
my, ny = get_mn_y(lMax)
N = yN * xN
J_scat=3
J_ext=1
# Do something with this ugly indexing crap
xind, yind = np.meshgrid(np.arange(xN),np.arange(yN), indexing='ij')
xind = xind.flatten()
yind = yind.flatten()
xyind = np.stack((xind, yind, np.zeros((xind.shape),dtype=int)),axis=-1)
cart_lattice=xyind * np.array([xd, yd, 0])
x=cart_lattice[:,0]
y=cart_lattice[:,1]
xyind = xyind[:,0:2]
# Lattice speedup
if (watch_time):
timec = time.time()
print('%.4f: calculating the %d translation matrix elements' % (timec, 8*nelem*nelem*xN*yN), file = sys.stderr)
sys.stderr.flush()
Agrid = np.zeros((nelem, 2*xN, 2*yN, nelem),dtype=np.complex_)
Bgrid = np.zeros((nelem, 2*xN, 2*yN, nelem),dtype=np.complex_)
for yl in range(nelem): # source
for xij in range(2*xN):
for yij in range(2*yN):
for yj in range(nelem): #dest
if((yij != yN) or (xij != xN)):
d_l2j = cart2sph(np.array([(xij-xN)*xd, (yij-yN)*yd, 0]))
Agrid[yj, xij, yij, yl] = Ã(my[yj],ny[yj],my[yl],ny[yl],kdlj=d_l2j[0]*k_out,θlj=d_l2j[1],φlj=d_l2j[2],r_ge_d=False,J=J_scat)
Bgrid[yj, xij, yij, yl] = B̃(my[yj],ny[yj],my[yl],ny[yl],kdlj=d_l2j[0]*k_out,θlj=d_l2j[1],φlj=d_l2j[2],r_ge_d=False,J=J_scat)
# Translation coefficient matrix T
if (watch_time):
timecold = timec
timec = time.time()
print('%4f: translation matrix elements calculated (elapsed %.2f s), filling the matrix'
% (timec, timec-timecold), file = sys.stderr)
sys.stderr.flush()
transmat = np.zeros((xN* yN, 2, nelem, xN* yN, 2, nelem),dtype=np.complex_)
for l in range(N):
xil, yil = xyind[l]
for j in range(N):
xij, yij = xyind[j]
if (l!=j):
transmat[j,0,:,l,0,:] = Agrid[:, xij - xil + xN, yij - yil + yN, :]
transmat[j,0,:,l,1,:] = Bgrid[:, xij - xil + xN, yij - yil + yN, :]
transmat[j,1,:,l,0,:] = Bgrid[:, xij - xil + xN, yij - yil + yN, :]
transmat[j,1,:,l,1,:] = Agrid[:, xij - xil + xN, yij - yil + yN, :]
Agrid = None
Bgrid = None
if (watch_time):
timecold = timec
timec = time.time()
print('%4f: translation matrix filled (elapsed %.2f s), building the interaction matrix'
% (timec, timec-timecold), file=sys.stderr)
sys.stderr.flush()
# Now we solve a linear problem (1 - M T) A = M P_0 where M is the T-matrix :-)
MT = np.empty((N,2,nelem,N,2,nelem),dtype=np.complex_)
TMatrices = np.broadcast_to(TMatrices, (xN, yN, 2, nelem, 2, nelem))
for j in range(N): # I wonder how this can be done without this loop...
xij, yij = xyind[j]
MT[j] = np.tensordot(TMatrices[xij, yij],transmat[j],axes=([-2,-1],[0,1]))
MT.shape = (N*2*nelem, N*2*nelem)
leftmatrix = np.identity(N*2*nelem) - MT
MT = None
if (watch_time):
timecold = timec
timec = time.time()
print('%.4f: interaction matrix complete (elapsed %.2f s)' % (timec, timec-timecold),
file=sys.stderr)
sys.stderr.flush()
if ((1 == k_dirs.ndim) and (1 == E_0s.ndim)):
k_cart = k_dirs * k_out # wave vector of the incident plane wave
pq_0 = np.zeros((N,2,nelem), dtype=np.complex_)
p_y0, q_y0 = plane_pq_y(lMax, k_cart, E_0s)
pq_0[:,0,:] = np.exp(1j*np.sum(k_cart[ň,:]*cart_lattice,axis=-1))[:, ň] * p_y0[ň, :]
pq_0[:,1,:] = np.exp(1j*np.sum(k_cart[ň,:]*cart_lattice,axis=-1))[:, ň] * q_y0[ň, :]
if (return_pq_0):
pq_0_arr = pq_0
MP_0 = np.empty((N,2,nelem),dtype=np.complex_)
#if (watch_time):
# print('%4f: building the interaction matrix' % time.time(), file=sys.stderr)
for j in range(N): # I wonder how this can be done without this loop...
MP_0[j] = np.tensordot(TMatrices[xij, yij],pq_0[j],axes=([-2,-1],[-2,-1]))
MP_0.shape = (N*2*nelem,)
if (watch_time):
timecold = time.time()
print('%4f: solving the scattering problem for single incoming wave' % timecold,
file = sys.stderr)
sys.stderr.flush()
ab = np.linalg.solve(leftmatrix, MP_0)
if watch_time:
timec = time.time()
print('%4f: solved (elapsed %.2f s)' % (timec, timec-timecold), file=sys.stderr)
sys.stderr.flush()
ab.shape = (xN, yN, 2, nelem)
else:
# handle "broadcasting" for k, E
if 1 == k_dirs.ndim:
k_dirs = k_dirs[ň,:]
if 1 == E_0s.ndim:
E_0s = E_0s[ň,:]
K = max(E_0s.shape[-2], k_dirs.shape[-2])
k_dirs = np.broadcast_to(k_dirs,(K,3))
E_0s = np.broadcast_to(E_0s, (K,3))
# А ну, чики-брики и в дамки!
if watch_time:
timecold = time.time()
print('%.4f: factorizing the interaction matrix' % timecold, file=sys.stderr)
lupiv = scipy.linalg.lu_factor(leftmatrix, overwrite_a=True)
leftmatrix = None
if watch_time:
timec = time.time()
print('%.4f: factorization complete (elapsed %.2f s)' % (timec, timec-timecold),
file = sys.stderr)
print('%.4f: solving the scattering problem for %d incoming waves' % (timec, K),
file=sys.stderr)
sys.stderr.flush()
timecold = timec
if (return_pq_0):
pq_0_arr = np.zeros((K,N,2,nelem), dtype=np.complex_)
ab = np.empty((K,N*2*nelem), dtype=complex)
for ki in range(K):
k_cart = k_dirs[ki] * k_out
pq_0 = np.zeros((N,2,nelem), dtype=np.complex_)
p_y0, q_y0 = plane_pq_y(lMax, k_cart, E_0s[ki])
pq_0[:,0,:] = np.exp(1j*np.sum(k_cart[ň,:]*cart_lattice,axis=-1))[:, ň] * p_y0[ň, :]
pq_0[:,1,:] = np.exp(1j*np.sum(k_cart[ň,:]*cart_lattice,axis=-1))[:, ň] * q_y0[ň, :]
if (return_pq_0):
pq_0_arr[ki] = pq_0
MP_0 = np.empty((N,2,nelem),dtype=np.complex_)
for j in range(N): # I wonder how this can be done without this loop...
MP_0[j] = np.tensordot(TMatrices[xij, yij],pq_0[j],axes=([-2,-1],[-2,-1]))
MP_0.shape = (N*2*nelem,)
ab[ki] = scipy.linalg.lu_solve(lupiv, MP_0)
ab.shape = (K, xN, yN, 2, nelem)
if watch_time:
timec = time.time()
print('%.4f: done (elapsed %.2f s)' % (timec, timec-timecold),file = sys.stderr)
sys.stderr.flush()
if not (return_pq_0 + return_pq + return_xy):
return ab
returnlist = [ab]
if (return_pq_0):
returnlist.append(pq_0_arr)
if (return_pq):
warnings.warn("return_pq not implemented, ignoring")
# returnlist.append(pq_arr)
if (return_xy):
returnlist.append(x)
returnlist.append(y)
return tuple(returnlist)