2019-07-28 15:25:04 +03:00
#LyX 2.4 created this file. For more info see https://www.lyx.org/
\lyxformat 583
2019-06-30 21:30:54 +03:00
\begin_document
\begin_header
2019-07-20 07:09:31 +03:00
\save_transient_properties true
\origin unavailable
2019-06-30 21:30:54 +03:00
\textclass article
\use_default_options true
\maintain_unincluded_children false
2019-07-28 15:25:04 +03:00
\language english
2019-06-30 21:30:54 +03:00
\language_package default
2019-07-28 15:25:04 +03:00
\inputencoding utf8
\fontencoding auto
2019-07-20 07:09:31 +03:00
\font_roman "default" "TeX Gyre Pagella"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
2019-06-30 21:30:54 +03:00
\font_default_family default
2019-07-28 15:25:04 +03:00
\use_non_tex_fonts false
2019-06-30 21:30:54 +03:00
\font_sc false
2019-07-28 15:25:04 +03:00
\font_roman_osf true
\font_sans_osf false
\font_typewriter_osf false
2019-07-20 07:09:31 +03:00
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
2019-06-30 21:30:54 +03:00
\graphics default
2019-07-28 15:25:04 +03:00
\default_output_format default
2019-06-30 21:30:54 +03:00
\output_sync 0
\bibtex_command default
\index_command default
2019-07-28 15:25:04 +03:00
\float_placement class
\float_alignment class
2019-06-30 21:30:54 +03:00
\paperfontsize default
\spacing single
\use_hyperref true
\pdf_author "Marek Nečada"
\pdf_bookmarks true
\pdf_bookmarksnumbered false
\pdf_bookmarksopen false
\pdf_bookmarksopenlevel 1
\pdf_breaklinks false
\pdf_pdfborder false
\pdf_colorlinks false
\pdf_backref false
\pdf_pdfusetitle true
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
2019-07-20 07:09:31 +03:00
\use_minted 0
2019-07-28 15:25:04 +03:00
\use_lineno 0
2019-06-30 21:30:54 +03:00
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
2019-07-20 07:09:31 +03:00
\is_math_indent 0
\math_numbering_side default
2019-07-28 15:25:04 +03:00
\quotes_style english
2019-07-20 07:09:31 +03:00
\dynamic_quotes 0
2019-06-30 21:30:54 +03:00
\papercolumns 1
\papersides 1
\paperpagestyle default
2019-07-28 15:25:04 +03:00
\tablestyle default
2019-06-30 21:30:54 +03:00
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Section
Finite systems
\end_layout
2019-07-01 14:50:46 +03:00
\begin_layout Itemize
motivation (classes of problems that this can solve: response to external
radiation, resonances, ...)
2019-07-20 07:09:31 +03:00
\begin_inset Separator latexpar
\end_inset
2019-07-01 14:50:46 +03:00
\end_layout
\begin_deeper
\begin_layout Itemize
theory
2019-07-20 07:09:31 +03:00
\begin_inset Separator latexpar
\end_inset
2019-07-01 14:50:46 +03:00
\end_layout
\begin_deeper
\begin_layout Itemize
T-matrix definition, basics
2019-07-20 07:09:31 +03:00
\begin_inset Separator latexpar
\end_inset
2019-07-01 14:50:46 +03:00
\end_layout
\begin_deeper
\begin_layout Itemize
How to get it?
\end_layout
\end_deeper
\begin_layout Itemize
translation operators (TODO think about how explicit this should be, but
I guess it might be useful to write them to write them explicitly (but
in the shortest possible form) in the normalisation used in my program)
\end_layout
\begin_layout Itemize
employing point group symmetries and decomposing the problem to decrease
the computational complexity (maybe separately)
\end_layout
\end_deeper
\end_deeper
\begin_layout Subsection
Motivation
\end_layout
2019-07-19 11:20:13 +03:00
\begin_layout Standard
2019-07-20 07:09:31 +03:00
The basic idea of MSTMM is quite simple: the driving electromagnetic field
incident onto a scatterer is expanded into a vector spherical wavefunction
(VSWF) basis in which the single scattering problem is solved, and the
scattered field is then re-expanded into VSWFs centered at the other scatterers.
Repeating the same procedure with all (pairs of) scatterers yields a set
of linear equations, solution of which gives the coefficients of the scattered
field in the VSWF bases.
2019-07-28 23:39:56 +03:00
Once these coefficients have been found, one can evaluate various quantities
related to the scattering (such as cross sections or the scattered fields)
quite easily.
\end_layout
\begin_layout Standard
However, the expressions appearing in the re-expansions are fairly complicated,
and the implementation of MSTMM is extremely error-prone also due to the
various conventions used in the literature.
Therefore although we do not re-derive from scratch the expressions that
can be found elsewhere in literature, we always state them explicitly in
our convention.
2019-07-19 11:20:13 +03:00
\end_layout
2019-07-01 14:50:46 +03:00
\begin_layout Subsection
Single-particle scattering
\end_layout
\begin_layout Standard
In order to define the basic concepts, let us first consider the case of
EM radiation scattered by a single particle.
We assume that the scatterer lies inside a closed sphere
\begin_inset Formula $\particle$
\end_inset
, the space outside this volume
\begin_inset Formula $\medium$
\end_inset
is filled with an homogeneous isotropic medium with relative electric permittiv
ity
\begin_inset Formula $\epsilon(\vect r,\omega)=\epsbg(\omega)$
\end_inset
and magnetic permeability
\begin_inset Formula $\mu(\vect r,\omega)=\mubg(\omega)$
\end_inset
, and that the whole system is linear, i.e.
the material properties of neither the medium nor the scatterer depend
on field intensities.
2019-07-28 23:39:56 +03:00
Under these assumptions, the EM fields
\begin_inset Formula $\vect{\Psi}=\vect E,\vect H$
\end_inset
in
2019-07-01 14:50:46 +03:00
\begin_inset Formula $\medium$
\end_inset
2019-07-28 23:39:56 +03:00
must satisfy the homogeneous vector Helmholtz equation together with the
transversality condition
\begin_inset Formula
\begin{equation}
\left(\nabla^{2}+k^{2}\right)\Psi\left(\vect r,\vect{\omega}\right)=0,\quad\nabla\cdot\vect{\Psi}\left(\vect r,\vect{\omega}\right)=0\label{eq:Helmholtz eq}
\end{equation}
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
frequency-space Maxwell's equations
\begin_inset Formula
\begin{align*}
\nabla\times\vect E\left(\vect r,\omega\right)-ik\eta_{0}\eta\vect H\left(\vect r,\omega\right) & =0,\\
\eta_{0}\eta\nabla\times\vect H\left(\vect r,\omega\right)+ik\vect E\left(\vect r,\omega\right) & =0.
\end{align*}
\end_inset
\end_layout
2019-07-01 14:50:46 +03:00
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
todo define
\begin_inset Formula $\Psi$
\end_inset
, mention transversality
\end_layout
\end_inset
2019-07-20 07:09:31 +03:00
with
2019-07-28 23:39:56 +03:00
\begin_inset Formula $k=k\left(\omega\right)=\omega\sqrt{\mubg(\omega)\epsbg(\omega)}/c_{0}$
2019-07-18 22:50:01 +03:00
\end_inset
2019-07-28 23:39:56 +03:00
, as can be derived from the Maxwell's equations [REF Jackson?].
\end_layout
\begin_layout Subsubsection
Spherical waves
2019-07-01 14:50:46 +03:00
\end_layout
2019-07-20 07:09:31 +03:00
\begin_layout Standard
2019-07-28 23:39:56 +03:00
Equation
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:Helmholtz eq"
plural "false"
caps "false"
noprefix "false"
\end_inset
can be solved by separation of variables in spherical coordinates to give
the solutions – the
\emph on
regular
\emph default
and
\emph on
outgoing
\emph default
vector spherical wavefunctions (VSWFs)
\begin_inset Formula $\vswfrtlm{\tau}lm\left(k\vect r\right)$
\end_inset
and
\begin_inset Formula $\vswfouttlm{\tau}lm\left(k\vect r\right)$
\end_inset
, respectively, defined as follows:
\begin_inset Formula
\begin{align*}
\vswfrtlm 1lm\left(k\vect r\right) & =j_{l}\left(kr\right)\vsh 1lm\left(\uvec r\right),\\
\vswfrtlm 2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krj_{l}\left(kr\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{j_{l}\left(kr\right)}{kr}\vsh 3lm\left(\uvec r\right),
\end{align*}
\end_inset
\begin_inset Formula
\begin{align*}
\vswfouttlm 1lm\left(k\vect r\right) & =h_{l}^{\left(1\right)}\left(kr\right)\vsh 1lm\left(\uvec r\right),\\
\vswfouttlm 2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krh_{l}^{\left(1\right)}\left(kr\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{h_{l}^{\left(1\right)}\left(kr\right)}{kr}\vsh 3lm\left(\uvec r\right),\\
& \tau=1,2;\quad l=1,2,3,\dots;\quad m=-l,-l+1,\dots,+l,
\end{align*}
\end_inset
where
\begin_inset Formula $\vect r=r\uvec r$
\end_inset
,
\begin_inset Formula $j_{l}\left(x\right),h_{l}^{\left(1\right)}\left(x\right)=j_{l}\left(x\right)+iy_{l}\left(x\right)$
\end_inset
are the regular spherical Bessel function and spherical Hankel function
of the first kind, respectively, as in [DLMF §10.47], and
\begin_inset Formula $\vsh{\tau}lm$
\end_inset
are the
\emph on
vector spherical harmonics
\emph default
\begin_inset Formula
\begin{align*}
\vsh 1lm & =\\
\vsh 2lm & =\\
\vsh 3lm & =
\end{align*}
\end_inset
In our convention, the (scalar) spherical harmonics
\begin_inset Formula $\ush lm$
\end_inset
are identical to those in [DLMF 14.30.1], i.e.
\begin_inset Formula
\[
\ush lm=\left(\frac{\left(l-m\right)!\left(2l+1\right)}{4\pi\left(l+m\right)!}\right)^{\frac{1}{2}}e^{im\phi}\dlmfFer lm\left(\cos\theta\right)
\]
\end_inset
where importantly, the Ferrers functions
\begin_inset Formula $\dlmfFer lm$
\end_inset
defined as in [DLMF §14.3(i)] do already contain the Condon-Shortley phase
\begin_inset Formula $\left(-1\right)^{m}$
\end_inset
.
\begin_inset Note Note
status open
\begin_layout Plain Layout
TODO názornější definice.
\end_layout
\end_inset
\end_layout
\begin_layout Standard
The convention for VSWFs used here is the same as in [Kristensson 2014];
over other conventions used elsewhere in literature, it has several fundamental
advantages – most importantly, the translation operators introduced later
in eq.
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:translation op def"
plural "false"
caps "false"
noprefix "false"
\end_inset
are unitary, and it gives the simplest possible expressions for power transport
and cross sections without additional
\begin_inset Formula $l,m$
\end_inset
-dependent factors (for that reason, we also call our VSWFs as
\emph on
power-normalised
\emph default
).
Power-normalisation and unitary translation operators are possible to achieve
also with real spherical harmonics – such a convention is used in
2019-07-01 14:50:46 +03:00
\begin_inset CommandInset citation
LatexCommand cite
key "kristensson_scattering_2016"
2019-07-28 23:39:56 +03:00
literal "false"
2019-07-01 14:50:46 +03:00
\end_inset
.
\end_layout
2019-07-28 23:39:56 +03:00
\begin_layout Standard
2019-07-29 10:14:08 +03:00
\begin_inset Note Note
status open
\begin_layout Plain Layout
2019-07-28 23:39:56 +03:00
Its solutions (TODO under which conditions? What vector space do the SVWFs
actually span? Check Comment 9.2 and Appendix f.9.1 in Kristensson)
2019-07-01 14:50:46 +03:00
\end_layout
2019-07-29 10:14:08 +03:00
\end_inset
\end_layout
2019-07-01 14:50:46 +03:00
\begin_layout Standard
\begin_inset Note Note
status open
\begin_layout Plain Layout
TODO small note about cartesian multipoles, anapoles etc.
(There should be some comparing paper that the Russians at META 2018 mentioned.)
\end_layout
\end_inset
\end_layout
\begin_layout Subsubsection
T-matrix definition
\end_layout
2019-07-29 10:14:08 +03:00
\begin_layout Standard
The regular VSWFs
\begin_inset Formula $\vswfrtlm{\tau}lm\left(k\vect r\right)$
\end_inset
constitute a basis for solutions of the Helmholtz equation
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:Helmholtz eq"
plural "false"
caps "false"
noprefix "false"
\end_inset
inside a ball
\begin_inset Formula $\openball 0R$
\end_inset
with radius
\begin_inset Formula $R$
\end_inset
and center in the origin; however, if the equation is not guaranteed to
hold inside a smaller ball
\begin_inset Formula $B_{0}\left(R_{<}\right)$
\end_inset
around the origin (typically due to presence of a scatterer), one has to
add the outgoing VSWFs
\begin_inset Formula $\vswfrtlm{\tau}lm\left(k\vect r\right)$
\end_inset
to have a complete basis of the solutions in the volume
\begin_inset Formula $\openball 0R\backslash B_{0}\left(R_{<}\right)$
\end_inset
.
\begin_inset Note Note
status open
\begin_layout Plain Layout
Vnitřní koule uzavřená? Jak se řekne mezikulí anglicky?
\end_layout
\end_inset
\end_layout
\begin_layout Standard
The single-particle scattering problem at frequency
\begin_inset Formula $\omega$
\end_inset
can be posed as follows: Let a scatterer be enclosed inside the ball
\begin_inset Formula $B_{0}\left(R_{<}\right)$
\end_inset
and let the whole volume
\begin_inset Formula $\openball 0R\backslash B_{0}\left(R_{<}\right)$
\end_inset
be filled with a homogeneous isotropic medium with wave number
\begin_inset Formula $k\left(\omega\right)$
\end_inset
.
Inside this volume, the electric field can be expanded as
\begin_inset Note Note
status open
\begin_layout Plain Layout
doplnit frekvence a polohy
\end_layout
\end_inset
\begin_inset Formula
2019-07-29 10:51:43 +03:00
\begin{equation}
\vect E\left(\omega,\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\left(\rcoefftlm{\tau}lm\vswfrtlm{\tau}lm+\outcoefftlm{\tau}lm\vswfouttlm{\tau}lm\right).\label{eq:E field expansion}
\end{equation}
2019-07-29 10:14:08 +03:00
\end_inset
If there was no scatterer and
\begin_inset Formula $B_{0}\left(R_{<}\right)$
\end_inset
was filled with the same homogeneous medium, the part with the outgoing
VSWFs would vanish and only the part
\begin_inset Formula $\vect E_{\mathrm{inc}}=\sum_{\tau lm}\rcoefftlm{\tau}lm\vswfrtlm{\tau}lm$
\end_inset
due to sources outside
\begin_inset Formula $\openball 0R$
\end_inset
would remain.
Let us assume that the
\begin_inset Quotes eld
\end_inset
driving field
\begin_inset Quotes erd
\end_inset
is given, so that presence of the scatterer does not affect
\begin_inset Formula $\vect E_{\mathrm{inc}}$
\end_inset
and is fully manifested in the latter part,
\begin_inset Formula $\vect E_{\mathrm{scat}}=\sum_{\tau lm}\outcoefftlm{\tau}lm\vswfouttlm{\tau}lm$
\end_inset
.
We also assume that the scatterer is made of optically linear materials,
and hence reacts on the incident field in a linear manner.
This gives a linearity constraint between the expansion coefficients
\begin_inset Formula
\begin{equation}
\outcoefftlm{\tau}lm=\sum_{\tau'l'm'}T_{\tau lm}^{\tau'l'm'}\rcoefftlm{\tau'}{l'}{m'}\label{eq:T-matrix definition}
\end{equation}
\end_inset
where the
\begin_inset Formula $T_{\tau lm}^{\tau'l'm'}=T_{\tau lm}^{\tau'l'm'}\left(\omega\right)$
\end_inset
are the elements of the
\emph on
transition matrix,
\emph default
a.k.a.
\begin_inset Formula $T$
\end_inset
-matrix.
It completely describes the scattering properties of a linear scatterer,
so with the knowledge of the
\begin_inset Formula $T$
\end_inset
-matrix, we can solve the single-patricle scatering prroblem simply by substitut
ing appropriate expansion coefficients
\begin_inset Formula $\rcoefftlm{\tau'}{l'}{m'}$
\end_inset
of the driving field into
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:T-matrix definition"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
\end_layout
2019-07-29 10:51:43 +03:00
\begin_layout Standard
\begin_inset Note Note
status open
\begin_layout Plain Layout
TOOD H-field expansion here?
\end_layout
\end_inset
\end_layout
2019-07-29 10:14:08 +03:00
\begin_layout Standard
\begin_inset Formula $T$
\end_inset
-matrices of particles with certain simple geometries (most famously spherical)
can be obtained analytically [Kristensson 2016, Mie], but in general one
can find them numerically by simulating scattering of a regular spherical
wave
\begin_inset Formula $\vswfouttlm{\tau}lm$
\end_inset
and projecting the scattered fields (or induced currents, depending on
the method) onto the outgoing VSWFs
\begin_inset Formula $\vswfrtlm{\tau}{'l'}{m'}$
\end_inset
.
In practice, one can compute only a finite number of elements with a cut-off
value
\begin_inset Formula $L$
\end_inset
on the multipole degree,
\begin_inset Formula $l,l'\le L$
\end_inset
, see below.
We typically use the scuff-tmatrix tool from the free software SCUFF-EM
suite [SCUFF-EM].
Note that older versions of SCUFF-EM contained a bug that rendered almost
all
\begin_inset Formula $T$
\end_inset
-matrix results wrong; we found and fixed the bug and from upstream version
xxx onwards, it should behave correctly.
2019-07-01 14:50:46 +03:00
\end_layout
\begin_layout Subsubsection
T-matrix compactness, cutoff validity
\end_layout
2019-07-29 10:14:08 +03:00
\begin_layout Standard
The magnitude of the
\begin_inset Formula $T$
\end_inset
-matrix elements depends heavily on the scatterer's size compared to the
wavelength.
Fortunately, the
\begin_inset Formula $T$
\end_inset
-matrix of a bounded scatterer is a compact operator [REF???], so from certain
multipole degree onwards,
\begin_inset Formula $l,l'>L$
\end_inset
, the elements of the
\begin_inset Formula $T$
\end_inset
-matrix are negligible, so truncating the
\begin_inset Formula $T$
\end_inset
-matrix at finite multipole degree
\begin_inset Formula $L$
\end_inset
gives a good approximation of the actual infinite-dimensional itself.
If the incident field is well-behaved, i.e.
the expansion coefficients
\begin_inset Formula $\rcoefftlm{\tau'}{l'}{m'}$
\end_inset
do not take excessive values for
\begin_inset Formula $l'>L$
\end_inset
, the scattered field expansion coefficients
\begin_inset Formula $\outcoefftlm{\tau}lm$
\end_inset
with
\begin_inset Formula $l>L$
\end_inset
will also be negligible.
2019-07-29 10:51:43 +03:00
\begin_inset Note Note
status open
\begin_layout Plain Layout
TODO when it will not be negligible
\end_layout
\end_inset
2019-07-29 10:14:08 +03:00
\end_layout
\begin_layout Standard
A rule of thumb to choose the
\begin_inset Formula $L$
\end_inset
with desired
\begin_inset Formula $T$
\end_inset
-matrix element accuracy
\begin_inset Formula $\delta$
\end_inset
can be obtained from the spherical Bessel function expansion around zero,
TODO.
\end_layout
\begin_layout Subsubsection
2019-07-29 10:51:43 +03:00
Power transport
\end_layout
\begin_layout Standard
For convenience, let us introduce a short-hand matrix notation for the expansion
coefficients and related quantities, so that we do not need to write the
indices explicitly; so for example, eq.
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:T-matrix definition"
plural "false"
caps "false"
noprefix "false"
\end_inset
would be written as
\begin_inset Formula $\outcoeffp{}=T\rcoeffp{}$
\end_inset
, where
\begin_inset Formula $\rcoeffp{},\outcoeffp{}$
\end_inset
are column vectors with the expansion coefficients.
Transposed and complex-conjugated matrices are labeled with the
\begin_inset Formula $\dagger$
\end_inset
superscript.
\end_layout
\begin_layout Standard
With this notation, we state an important result about power transport,
derivation of which can be found in
\begin_inset CommandInset citation
LatexCommand cite
after "sect. 7.3"
key "kristensson_scattering_2016"
literal "true"
\end_inset
.
Let the field in
\begin_inset Formula $\openball 0R\backslash B_{0}\left(R_{<}\right)$
\end_inset
have expansion as in
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:E field expansion"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
Then the net power transported from
\begin_inset Formula $B_{0}\left(R_{<}\right)$
\end_inset
to
\begin_inset Formula $\openball 0R\backslash B_{0}\left(R_{<}\right)$
\end_inset
via by electromagnetic radiation is
\begin_inset Formula
\begin{equation}
P=\frac{1}{2k^{2}\eta_{0}\eta}\left(\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)+\left\Vert \outcoeffp{}\right\Vert ^{2}\right)=\frac{1}{2k^{2}\eta_{0}\eta}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}+\frac{\Tp{}^{\dagger}+\Tp{}}{2}\right)\rcoeffp{}.\label{eq:Power transport}
\end{equation}
\end_inset
In realistic scattering setups, power is transferred by radiation into
\begin_inset Formula $B_{0}\left(R_{<}\right)$
\end_inset
and absorbed by the enclosed scatterer, so
\begin_inset Formula $P$
\end_inset
is negative and its magnitude equals to power absorbed by the scatterer.
\end_layout
\begin_layout Subsubsection
Plane wave expansion
\end_layout
\begin_layout Standard
In many scattering problems considered in practice, the driving field is
a plane wave.
A transversal (
\begin_inset Formula $\vect k\cdot\vect E_{0}=0$
\end_inset
) plane wave propagating in direction
\begin_inset Formula $\uvec k$
\end_inset
with (complex) amplitude
\begin_inset Formula $\vect E_{0}$
\end_inset
can be expanded into regular VSWFs [REF KRIS] as
\begin_inset Formula
\[
\vect E_{\mathrm{PW}}\left(\vect r,\omega\right)=\vect E_{0}e^{ik\uvec k\cdot\vect r}=\sum_{\tau,l,m}\rcoeffptlm{}{\tau}lm\left(\vect k,\vect E_{0}\right)\vswfrtlm{\tau}lm\left(k\vect r\right),
\]
\end_inset
with expansion coefficients
\begin_inset Formula
\begin{eqnarray}
\rcoeffptlm{}1lm\left(\vect k,\vect E_{0}\right) & = & 4\pi i^{l}\vshD 1lm\left(\uvec k\right),\nonumber \\
\rcoeffptlm{}2lm\left(\vect k,\vect E_{0}\right) & = & -4\pi i^{l+1}\vshD 2lm\left(\uvec k\right).\label{eq:plane wave expansion}
\end{eqnarray}
\end_inset
where
\begin_inset Formula $\vshD{\tau}lm$
\end_inset
are the
\begin_inset Quotes eld
\end_inset
dual
\begin_inset Quotes erd
\end_inset
vector spherical harmonics defined by duality relation with the
\begin_inset Quotes eld
\end_inset
usual
\begin_inset Quotes erd
\end_inset
vector spherical harmonics
\begin_inset Formula
\begin{equation}
\iint\vshD{\tau'}{l'}{m'}\left(\uvec r\right)\cdot\vsh{\tau}lm\left(\uvec r\right)\,\ud\Omega=\delta_{\tau'\tau}\delta_{l'l}\delta_{m'm}\label{eq:dual vsh}
\end{equation}
\end_inset
(complex conjugation not implied in the dot product here).
In our convention, we have
\begin_inset Formula
\[
\vshD{\tau}lm\left(\uvec r\right)=\left(\vsh{\tau}lm\left(\uvec r\right)\right)^{*}=\left(-1\right)^{m}\vsh{\tau}{l-}m\left(\uvec r\right).
\]
\end_inset
\end_layout
\begin_layout Subsection
Cross-sections (single-particle)
\end_layout
\begin_layout Standard
With the
\begin_inset Formula $T$
\end_inset
-matrix and expansion coefficients of plane waves in hand, we can state
the expressions for cross-sections of a single scatterer.
Assuming a non-lossy background medium, extinction, scattering and absorption
cross sections of a single scatterer irradiated by a plane wave propagating
in direction
\begin_inset Formula $\uvec k$
\end_inset
and (complex) amplitude
\begin_inset Formula $\vect E_{0}$
\end_inset
are
\begin_inset CommandInset citation
LatexCommand cite
after "sect. 7.8.2"
key "kristensson_scattering_2016"
literal "true"
\end_inset
\begin_inset Formula
\begin{eqnarray}
\sigma_{\mathrm{ext}}\left(\uvec k\right) & = & -\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)=-\frac{1}{2k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}+\Tp{}^{\dagger}\right)\rcoeffp{},\label{eq:extincion CS single}\\
\sigma_{\mathrm{scat}}\left(\uvec k\right) & = & \frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\left\Vert \outcoeffp{}\right\Vert ^{2}=\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}\right)\rcoeffp{},\label{eq:scattering CS single}\\
\sigma_{\mathrm{abs}}\left(\uvec k\right) & = & \sigma_{\mathrm{ext}}\left(\uvec k\right)-\sigma_{\mathrm{scat}}\left(\uvec k\right)=-\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\left(\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)+\left\Vert \outcoeffp{}\right\Vert ^{2}\right)\nonumber \\
& & =\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}+\frac{\Tp{}^{\dagger}+\Tp{}}{2}\right)\rcoeffp{},\label{eq:absorption CS single}
\end{eqnarray}
\end_inset
where
\begin_inset Formula $\rcoeffp{}=\rcoeffp{}\left(\vect k,\vect E_{0}\right)$
\end_inset
is the vector of plane wave expansion coefficients as in
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:plane wave expansion"
\end_inset
.
2019-07-29 10:14:08 +03:00
\end_layout
2019-07-01 14:50:46 +03:00
\begin_layout Subsection
Multiple scattering
\end_layout
\begin_layout Subsubsection
Translation operator
\end_layout
\begin_layout Subsubsection
Numerical complexity, comparison to other methods
\end_layout
2019-06-30 21:30:54 +03:00
\end_body
\end_document