Begin memo on radiative xfer.
Former-commit-id: d53ecaa7f212f9560f89a33ad1cba5cea0200836
This commit is contained in:
parent
01b4c1523d
commit
150c77c31e
|
@ -0,0 +1,414 @@
|
|||
#LyX 2.1 created this file. For more info see http://www.lyx.org/
|
||||
\lyxformat 474
|
||||
\begin_document
|
||||
\begin_header
|
||||
\textclass article
|
||||
\use_default_options true
|
||||
\begin_modules
|
||||
theorems-ams
|
||||
\end_modules
|
||||
\maintain_unincluded_children false
|
||||
\language english
|
||||
\language_package default
|
||||
\inputencoding auto
|
||||
\fontencoding global
|
||||
\font_roman TeX Gyre Pagella
|
||||
\font_sans default
|
||||
\font_typewriter default
|
||||
\font_math auto
|
||||
\font_default_family default
|
||||
\use_non_tex_fonts true
|
||||
\font_sc false
|
||||
\font_osf true
|
||||
\font_sf_scale 100
|
||||
\font_tt_scale 100
|
||||
\graphics default
|
||||
\default_output_format pdf4
|
||||
\output_sync 0
|
||||
\bibtex_command default
|
||||
\index_command default
|
||||
\paperfontsize 10
|
||||
\spacing single
|
||||
\use_hyperref true
|
||||
\pdf_title "Sähköpajan päiväkirja"
|
||||
\pdf_author "Marek Nečada"
|
||||
\pdf_bookmarks true
|
||||
\pdf_bookmarksnumbered false
|
||||
\pdf_bookmarksopen false
|
||||
\pdf_bookmarksopenlevel 1
|
||||
\pdf_breaklinks false
|
||||
\pdf_pdfborder false
|
||||
\pdf_colorlinks false
|
||||
\pdf_backref false
|
||||
\pdf_pdfusetitle true
|
||||
\papersize a4paper
|
||||
\use_geometry true
|
||||
\use_package amsmath 1
|
||||
\use_package amssymb 1
|
||||
\use_package cancel 1
|
||||
\use_package esint 1
|
||||
\use_package mathdots 1
|
||||
\use_package mathtools 1
|
||||
\use_package mhchem 1
|
||||
\use_package stackrel 1
|
||||
\use_package stmaryrd 1
|
||||
\use_package undertilde 1
|
||||
\cite_engine basic
|
||||
\cite_engine_type default
|
||||
\biblio_style plain
|
||||
\use_bibtopic false
|
||||
\use_indices false
|
||||
\paperorientation portrait
|
||||
\suppress_date false
|
||||
\justification true
|
||||
\use_refstyle 1
|
||||
\index Index
|
||||
\shortcut idx
|
||||
\color #008000
|
||||
\end_index
|
||||
\leftmargin 1cm
|
||||
\topmargin 5mm
|
||||
\rightmargin 1cm
|
||||
\bottommargin 1cm
|
||||
\secnumdepth 3
|
||||
\tocdepth 3
|
||||
\paragraph_separation indent
|
||||
\paragraph_indentation default
|
||||
\quotes_language english
|
||||
\papercolumns 1
|
||||
\papersides 1
|
||||
\paperpagestyle default
|
||||
\tracking_changes false
|
||||
\output_changes false
|
||||
\html_math_output 0
|
||||
\html_css_as_file 0
|
||||
\html_be_strict false
|
||||
\end_header
|
||||
|
||||
\begin_body
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\uoft}[1]{\mathfrak{F}#1}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\uaft}[1]{\mathfrak{\mathbb{F}}#1}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\usht}[2]{\mathbb{S}_{#1}#2}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\bsht}[2]{\mathrm{S}_{#1}#2}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\pht}[2]{\mathfrak{\mathbb{H}}_{#1}#2}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\vect}[1]{\mathbf{#1}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\ud}{\mathrm{d}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\basis}[1]{\mathfrak{#1}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\dc}[1]{Ш_{#1}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\rec}[1]{#1^{-1}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\recb}[1]{#1^{\widehat{-1}}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\ints}{\mathbb{Z}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\nats}{\mathbb{N}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\reals}{\mathbb{R}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\ush}[2]{Y_{#1,#2}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\hgfr}{\mathbf{F}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\ph}{\mathrm{ph}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\kor}[1]{\underline{#1}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\koru}[1]{\overline{#1}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\hgf}{F}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Title
|
||||
Radiation power balance in nanoparticles
|
||||
\end_layout
|
||||
|
||||
\begin_layout Author
|
||||
Marek Nečada
|
||||
\end_layout
|
||||
|
||||
\begin_layout Abstract
|
||||
This memo deals with the formulae for radiation transfer, absorption, extinction
|
||||
for single particle and composite system of several nanoparticles.
|
||||
I also derive some natural conditions on
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix elements.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section*
|
||||
Conventions
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
If not stated otherwise, Kristensson's notation and normalisation conventions
|
||||
are used in this memo.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
Single particle
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Power transfer formula, absorption
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The power radiated away by a linear scatterer at fixed harmonic frequency
|
||||
is according to [Kris (2.28)]
|
||||
\begin_inset Formula
|
||||
\[
|
||||
P=\frac{1}{2}\sum_{n}\left(\left|f_{n}\right|^{2}+\Re\left(f_{n}a_{n}^{*}\right)\right)
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula $n$
|
||||
\end_inset
|
||||
|
||||
is a multiindex describing the type (E/M) and multipole degree and order
|
||||
of the wave,
|
||||
\begin_inset Formula $f_{n}$
|
||||
\end_inset
|
||||
|
||||
is the coefficient corresponding to
|
||||
\series bold
|
||||
outgoing
|
||||
\series default
|
||||
(Hankel function based) and
|
||||
\begin_inset Formula $a_{n}$
|
||||
\end_inset
|
||||
|
||||
to
|
||||
\series bold
|
||||
regular
|
||||
\series default
|
||||
(first-order Bessel function based) waves.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
This is minus the power absorbed by the nanoparticle, and unless the particle
|
||||
has some gain mechanism, this cannot be positive.
|
||||
The basic condition for a physical nanoparticle therefore reads
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
P=\frac{1}{2}\sum_{n}\left(\left|f_{n}\right|^{2}+\Re\left(f_{n}a_{n}^{*}\right)\right)\le0.\label{eq:Absorption is never negative}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Conditions on the
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
For a linear scatterer, the outgoing and regular wave coefficients are connected
|
||||
via the
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
f_{n}=\sum_{n'}T_{nn'}a_{n'}.\label{eq:T-matrix definition}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Inequality
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Absorption is never negative"
|
||||
|
||||
\end_inset
|
||||
|
||||
enables us to derive some conditions on the
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix.
|
||||
Let the particle be driven by a wave of a single type
|
||||
\begin_inset Formula $m$
|
||||
\end_inset
|
||||
|
||||
only so the coefficients of all other components of the driving field are
|
||||
zero,
|
||||
\begin_inset Formula $a_{n}=\delta_{nm}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
From
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Absorption is never negative"
|
||||
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:T-matrix definition"
|
||||
|
||||
\end_inset
|
||||
|
||||
we get
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray}
|
||||
P & = & \frac{1}{2}\sum_{n}\left(\left|\sum_{n'}T_{nn'}a_{n'}\right|^{2}+\Re\left(\sum_{n'}T_{nn'}a_{n'}a_{n}^{*}\right)\right)\nonumber \\
|
||||
& = & \frac{1}{2}\sum_{n}\left(\left|\sum_{n'}T_{nn'}\delta_{n'm}\right|^{2}+\Re\left(\sum_{n'}T_{nn'}\delta_{n'm}\delta_{nm}\right)\right)\nonumber \\
|
||||
& = & \frac{1}{2}\left(\left|\sum_{n}T_{nm}\right|^{2}+\Re T_{mm}\right)\le0\qquad\forall m,\label{eq:Absorption is never negative for single wave type}
|
||||
\end{eqnarray}
|
||||
|
||||
\end_inset
|
||||
|
||||
a condition that should be checked e.g.
|
||||
for the
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrices generated by SCUFF-EM.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Remark
|
||||
For a particle of spherical symmetry
|
||||
\begin_inset Formula $T_{nm}\propto\delta_{nm}$
|
||||
\end_inset
|
||||
|
||||
, so
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Absorption is never negative for single wave type"
|
||||
|
||||
\end_inset
|
||||
|
||||
gives
|
||||
\begin_inset Formula $-\Re T_{mm}\ge\left|T_{mm}\right|^{2}$
|
||||
\end_inset
|
||||
|
||||
which in turn implies
|
||||
\begin_inset Formula $\left|T_{mm}\right|<1$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
(Any similar conclusion for the general case?)
|
||||
\end_layout
|
||||
|
||||
\begin_layout Problem
|
||||
Obviously,
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Absorption is never negative for single wave type"
|
||||
|
||||
\end_inset
|
||||
|
||||
is the consequence of the condition
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Absorption is never negative"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
But is
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Absorption is never negative"
|
||||
|
||||
\end_inset
|
||||
|
||||
always true if
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Absorption is never negative for single wave type"
|
||||
|
||||
\end_inset
|
||||
|
||||
satisfied?
|
||||
\end_layout
|
||||
|
||||
\end_body
|
||||
\end_document
|
Loading…
Reference in New Issue