Point group transformation of VSWFs, t-matrices.
Former-commit-id: 07695e5d1e8969a72fa9068d85ca359b4ebf4512
This commit is contained in:
parent
91e2ae9e4d
commit
36cc152166
|
@ -1,5 +1,5 @@
|
||||||
#LyX 2.4 created this file. For more info see https://www.lyx.org/
|
#LyX 2.4 created this file. For more info see https://www.lyx.org/
|
||||||
\lyxformat 583
|
\lyxformat 584
|
||||||
\begin_document
|
\begin_document
|
||||||
\begin_header
|
\begin_header
|
||||||
\save_transient_properties true
|
\save_transient_properties true
|
||||||
|
@ -734,6 +734,21 @@ Concrete comparison with other methods.
|
||||||
Fix and unify notation (mainly indices) in infinite lattices section.
|
Fix and unify notation (mainly indices) in infinite lattices section.
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Itemize
|
||||||
|
Carefully check the transformation directions in sec.
|
||||||
|
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand eqref
|
||||||
|
reference "sec:Symmetries"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
\begin_inset CommandInset include
|
\begin_inset CommandInset include
|
||||||
LatexCommand include
|
LatexCommand include
|
||||||
|
|
|
@ -1,5 +1,5 @@
|
||||||
#LyX 2.4 created this file. For more info see https://www.lyx.org/
|
#LyX 2.4 created this file. For more info see https://www.lyx.org/
|
||||||
\lyxformat 583
|
\lyxformat 584
|
||||||
\begin_document
|
\begin_document
|
||||||
\begin_header
|
\begin_header
|
||||||
\save_transient_properties true
|
\save_transient_properties true
|
||||||
|
@ -289,20 +289,20 @@ outgoing
|
||||||
|
|
||||||
, respectively, defined as follows:
|
, respectively, defined as follows:
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{align*}
|
\begin{align}
|
||||||
\vswfrtlm 1lm\left(k\vect r\right) & =j_{l}\left(kr\right)\vsh 1lm\left(\uvec r\right),\\
|
\vswfrtlm 1lm\left(k\vect r\right) & =j_{l}\left(kr\right)\vsh 1lm\left(\uvec r\right),\nonumber \\
|
||||||
\vswfrtlm 2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krj_{l}\left(kr\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{j_{l}\left(kr\right)}{kr}\vsh 3lm\left(\uvec r\right),
|
\vswfrtlm 2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krj_{l}\left(kr\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{j_{l}\left(kr\right)}{kr}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF regular}
|
||||||
\end{align*}
|
\end{align}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{align*}
|
\begin{align}
|
||||||
\vswfouttlm 1lm\left(k\vect r\right) & =h_{l}^{\left(1\right)}\left(kr\right)\vsh 1lm\left(\uvec r\right),\\
|
\vswfouttlm 1lm\left(k\vect r\right) & =h_{l}^{\left(1\right)}\left(kr\right)\vsh 1lm\left(\uvec r\right),\nonumber \\
|
||||||
\vswfouttlm 2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krh_{l}^{\left(1\right)}\left(kr\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{h_{l}^{\left(1\right)}\left(kr\right)}{kr}\vsh 3lm\left(\uvec r\right),\\
|
\vswfouttlm 2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krh_{l}^{\left(1\right)}\left(kr\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{h_{l}^{\left(1\right)}\left(kr\right)}{kr}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF outgoing}\\
|
||||||
& \tau=1,2;\quad l=1,2,3,\dots;\quad m=-l,-l+1,\dots,+l,
|
& \tau=1,2;\quad l=1,2,3,\dots;\quad m=-l,-l+1,\dots,+l,\nonumber
|
||||||
\end{align*}
|
\end{align}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
@ -325,11 +325,11 @@ vector spherical harmonics
|
||||||
\emph default
|
\emph default
|
||||||
|
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{align*}
|
\begin{align}
|
||||||
\vsh 1lm\left(\uvec r\right) & =\frac{1}{\sqrt{l\left(l+1\right)}}\nabla\times\left(\vect r\ush lm\left(\uvec r\right)\right)=\frac{1}{\sqrt{l\left(l+1\right)}}\nabla\ush lm\left(\uvec r\right)\times\vect r,\\
|
\vsh 1lm\left(\uvec r\right) & =\frac{1}{\sqrt{l\left(l+1\right)}}\nabla\times\left(\vect r\ush lm\left(\uvec r\right)\right)=\frac{1}{\sqrt{l\left(l+1\right)}}\nabla\ush lm\left(\uvec r\right)\times\vect r,\nonumber \\
|
||||||
\vsh 2lm\left(\uvec r\right) & =\frac{1}{\sqrt{l\left(l+1\right)}}r\nabla\ush lm\left(\uvec r\right),\\
|
\vsh 2lm\left(\uvec r\right) & =\frac{1}{\sqrt{l\left(l+1\right)}}r\nabla\ush lm\left(\uvec r\right),\nonumber \\
|
||||||
\vsh 3lm\left(\uvec r\right) & =\uvec r\ush lm\left(\uvec r\right).
|
\vsh 3lm\left(\uvec r\right) & =\uvec r\ush lm\left(\uvec r\right).\label{eq:vector spherical harmonics definition}
|
||||||
\end{align*}
|
\end{align}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
@ -517,7 +517,7 @@ doplnit frekvence a polohy
|
||||||
|
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\vect E\left(\omega,\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\left(\rcoefftlm{\tau}lm\vswfrtlm{\tau}lm+\outcoefftlm{\tau}lm\vswfouttlm{\tau}lm\right).\label{eq:E field expansion}
|
\vect E\left(\omega,\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\left(\rcoefftlm{\tau}lm\vswfrtlm{\tau}lm\left(k\vect r\right)+\outcoefftlm{\tau}lm\vswfouttlm{\tau}lm\left(k\vect r\right)\right).\label{eq:E field expansion}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -603,14 +603,27 @@ noprefix "false"
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
are the effective induced electric (
|
are the effective induced electric (
|
||||||
\begin_inset Formula $\tau=1$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
) and magnetic (
|
|
||||||
\begin_inset Formula $\tau=2$
|
\begin_inset Formula $\tau=2$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
) multipole polarisation amplitudes of the scatterer.
|
) and magnetic (
|
||||||
|
\begin_inset Formula $\tau=1$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
) multipole polarisation amplitudes of the scatterer, and this is why we
|
||||||
|
sometimes refer to the corresponding VSWFs as the electric and magnetic
|
||||||
|
VSWFs.
|
||||||
|
|
||||||
|
\begin_inset Note Note
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
TODO mention the pseudovector character of magnetic VSWFs.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
|
|
|
@ -1,5 +1,5 @@
|
||||||
#LyX 2.4 created this file. For more info see https://www.lyx.org/
|
#LyX 2.4 created this file. For more info see https://www.lyx.org/
|
||||||
\lyxformat 583
|
\lyxformat 584
|
||||||
\begin_document
|
\begin_document
|
||||||
\begin_header
|
\begin_header
|
||||||
\save_transient_properties true
|
\save_transient_properties true
|
||||||
|
@ -183,6 +183,318 @@ noprefix "false"
|
||||||
Finite systems
|
Finite systems
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
\begin_inset Note Note
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
TODO Zkontrolovat všechny vzorečky zde!!!
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
In order to use the point group symmetries, we first need to know how they
|
||||||
|
affect our basis functions, i.e.
|
||||||
|
the VSWFs.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
Let
|
||||||
|
\begin_inset Formula $g$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
be a member of orthogonal group
|
||||||
|
\begin_inset Formula $O(3)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, i.e.
|
||||||
|
a 3D point rotation or reflection operation that transforms vectors in
|
||||||
|
|
||||||
|
\begin_inset Formula $\reals^{3}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
with an orthogonal matrix
|
||||||
|
\begin_inset Formula $R_{g}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
:
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\vect r\mapsto R_{g}\vect r.
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
Spherical harmonics
|
||||||
|
\begin_inset Formula $\ush lm$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, being a basis the
|
||||||
|
\begin_inset Formula $l$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
-dimensional representation of
|
||||||
|
\begin_inset Formula $O(3)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, transform as
|
||||||
|
\begin_inset CommandInset citation
|
||||||
|
LatexCommand cite
|
||||||
|
after "???"
|
||||||
|
key "dresselhaus_group_2008"
|
||||||
|
literal "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\ush lm\left(R_{g}\uvec r\right)=\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\ush l{m'}\left(\uvec r\right)
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
where
|
||||||
|
\begin_inset Formula $D_{m,m'}^{l}\left(g\right)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
denotes the elements of the
|
||||||
|
\emph on
|
||||||
|
Wigner matrix
|
||||||
|
\emph default
|
||||||
|
representing the operation
|
||||||
|
\begin_inset Formula $g$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
By their definition, vector spherical harmonics
|
||||||
|
\begin_inset Formula $\vsh 2lm,\vsh 3lm$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
transform in the same way,
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{align*}
|
||||||
|
\vsh 2lm\left(R_{g}\uvec r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vsh 2l{m'}\left(\uvec r\right),\\
|
||||||
|
\vsh 3lm\left(R_{g}\uvec r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vsh 3l{m'}\left(\uvec r\right),
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
but the remaining set
|
||||||
|
\begin_inset Formula $\vsh 1lm$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
transforms differently due to their pseudovector nature stemming from the
|
||||||
|
cross product in their definition:
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\vsh 3lm\left(R_{g}\uvec r\right)=\sum_{m'=-l}^{l}\widetilde{D_{m,m'}^{l}}\left(g\right)\vsh 3l{m'}\left(\uvec r\right),
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
where
|
||||||
|
\begin_inset Formula $\widetilde{D_{m,m'}^{l}}\left(g\right)=D_{m,m'}^{l}\left(g\right)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
if
|
||||||
|
\begin_inset Formula $g$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is a proper rotation, but for spatial inversion operation
|
||||||
|
\begin_inset Formula $i:\vect r\mapsto-\vect r$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
we have
|
||||||
|
\begin_inset Formula $\widetilde{D_{m,m'}^{l}}\left(i\right)=\left(-1\right)^{l+m}D_{m,m'}^{l}\left(i\right)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
The transformation behaviour of vector spherical harmonics directly propagates
|
||||||
|
to the spherical vector waves, cf.
|
||||||
|
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand eqref
|
||||||
|
reference "eq:VSWF regular"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
,
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand eqref
|
||||||
|
reference "eq:VSWF outgoing"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
:
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{align*}
|
||||||
|
\vswfouttlm 1lm\left(R_{g}\vect r\right) & =\sum_{m'=-l}^{l}\widetilde{D_{m,m'}^{l}}\left(g\right)\vswfouttlm 1l{m'}\left(\vect r\right),\\
|
||||||
|
\vswfouttlm 2lm\left(R_{g}\vect r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vswfouttlm 2l{m'}\left(\vect r\right),
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
(and analogously for the regular waves
|
||||||
|
\begin_inset Formula $\vswfrtlm{\tau}lm$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
).
|
||||||
|
|
||||||
|
\begin_inset Note Note
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
TODO víc obdivu.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
For convenience, we introduce the symbol
|
||||||
|
\begin_inset Formula $D_{m,m'}^{\tau l}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
that describes the transformation of both types (
|
||||||
|
\begin_inset Quotes eld
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
magnetic
|
||||||
|
\begin_inset Quotes erd
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and
|
||||||
|
\begin_inset Quotes eld
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
electric
|
||||||
|
\begin_inset Quotes erd
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
) of waves at once:
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\vswfouttlm{\tau}lm\left(R_{g}\vect r\right)=\sum_{m'=-l}^{l}D_{m,m'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(\vect r\right).
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
Using these, we can express the VSWF expansion
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand eqref
|
||||||
|
reference "eq:E field expansion"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
of the electric field around origin in a rotated/reflected system,
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\vect E\left(\omega,R_{g}\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfrtlm{\tau}lm\left(k\vect r\right)+D_{m,m'}^{\tau l}\left(g\right)\outcoefftlm{\tau}lm\vswfouttlm{\tau}lm\left(k\vect r\right)\right),
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
which, together with the
|
||||||
|
\begin_inset Formula $T$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
-matrix definition,
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand eqref
|
||||||
|
reference "eq:T-matrix definition"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
can be used to obtain a
|
||||||
|
\begin_inset Formula $T$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
-matrix of a rotated or mirror-reflected particle.
|
||||||
|
Let
|
||||||
|
\begin_inset Formula $T$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
be the
|
||||||
|
\begin_inset Formula $T$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
-matrix of an original particle; the
|
||||||
|
\begin_inset Formula $T$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
-matrix of a particle physically transformed by operation
|
||||||
|
\begin_inset Formula $g\in O(3)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is then
|
||||||
|
\begin_inset Note Note
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
check sides
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{equation}
|
||||||
|
T'_{\tau lm;\tau'l'm'}=\sum_{\mu=-l}^{l}\sum_{\mu'=-l'}^{l'}\left(D_{\mu,m}^{\tau l}\left(g\right)\right)^{*}T_{\tau l\mu;\tau'l'm'}D_{m',\mu'}^{\tau l}\left(g\right).\label{eq:T-matrix of a transformed particle}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
If the particle is symmetric (so that
|
||||||
|
\begin_inset Formula $g$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
produces a particle indistinguishable from the original one), the
|
||||||
|
\begin_inset Formula $T$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
-matrix must remain invariant under the transformation
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand eqref
|
||||||
|
reference "eq:T-matrix of a transformed particle"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
,
|
||||||
|
\begin_inset Formula $T'_{\tau lm;\tau'l'm'}=T{}_{\tau lm;\tau'l'm'}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
Explicit forms of these invariance properties for the most imporant point
|
||||||
|
group symmetries can be found in
|
||||||
|
\begin_inset CommandInset citation
|
||||||
|
LatexCommand cite
|
||||||
|
key "schulz_point-group_1999"
|
||||||
|
literal "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
With these point group transformation properties in hand, we can proceed
|
||||||
|
to rotating (or mirror-reflecting) the whole many-particle system.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Subsection
|
\begin_layout Subsection
|
||||||
Periodic systems
|
Periodic systems
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
Loading…
Reference in New Issue