722 lines
15 KiB
Plaintext
722 lines
15 KiB
Plaintext
#LyX 2.4 created this file. For more info see https://www.lyx.org/
|
||
\lyxformat 584
|
||
\begin_document
|
||
\begin_header
|
||
\save_transient_properties true
|
||
\origin unavailable
|
||
\textclass article
|
||
\use_default_options true
|
||
\maintain_unincluded_children false
|
||
\language finnish
|
||
\language_package default
|
||
\inputencoding utf8
|
||
\fontencoding auto
|
||
\font_roman "default" "default"
|
||
\font_sans "default" "default"
|
||
\font_typewriter "default" "default"
|
||
\font_math "auto" "auto"
|
||
\font_default_family default
|
||
\use_non_tex_fonts false
|
||
\font_sc false
|
||
\font_roman_osf false
|
||
\font_sans_osf false
|
||
\font_typewriter_osf false
|
||
\font_sf_scale 100 100
|
||
\font_tt_scale 100 100
|
||
\use_microtype false
|
||
\use_dash_ligatures true
|
||
\graphics default
|
||
\default_output_format default
|
||
\output_sync 0
|
||
\bibtex_command default
|
||
\index_command default
|
||
\paperfontsize default
|
||
\use_hyperref false
|
||
\papersize default
|
||
\use_geometry false
|
||
\use_package amsmath 1
|
||
\use_package amssymb 1
|
||
\use_package cancel 1
|
||
\use_package esint 1
|
||
\use_package mathdots 1
|
||
\use_package mathtools 1
|
||
\use_package mhchem 1
|
||
\use_package stackrel 1
|
||
\use_package stmaryrd 1
|
||
\use_package undertilde 1
|
||
\cite_engine basic
|
||
\cite_engine_type default
|
||
\use_bibtopic false
|
||
\use_indices false
|
||
\paperorientation portrait
|
||
\suppress_date false
|
||
\justification true
|
||
\use_refstyle 1
|
||
\use_minted 0
|
||
\use_lineno 0
|
||
\index Index
|
||
\shortcut idx
|
||
\color #008000
|
||
\end_index
|
||
\secnumdepth 3
|
||
\tocdepth 3
|
||
\paragraph_separation indent
|
||
\paragraph_indentation default
|
||
\is_math_indent 0
|
||
\math_numbering_side default
|
||
\quotes_style english
|
||
\dynamic_quotes 0
|
||
\papercolumns 1
|
||
\papersides 1
|
||
\paperpagestyle default
|
||
\tablestyle default
|
||
\tracking_changes false
|
||
\output_changes false
|
||
\html_math_output 0
|
||
\html_css_as_file 0
|
||
\html_be_strict false
|
||
\end_header
|
||
|
||
\begin_body
|
||
|
||
\begin_layout Section
|
||
Symmetries
|
||
\begin_inset CommandInset label
|
||
LatexCommand label
|
||
name "sec:Symmetries"
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
If the system has nontrivial point group symmetries, group theory gives
|
||
additional understanding of the system properties, and can be used to reduce
|
||
the computational costs.
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
As an example, if our system has a
|
||
\begin_inset Formula $D_{2h}$
|
||
\end_inset
|
||
|
||
symmetry and our truncated
|
||
\begin_inset Formula $\left(I-T\trops\right)$
|
||
\end_inset
|
||
|
||
matrix has size
|
||
\begin_inset Formula $N\times N$
|
||
\end_inset
|
||
|
||
,
|
||
\begin_inset Note Note
|
||
status open
|
||
|
||
\begin_layout Plain Layout
|
||
nepoužívám
|
||
\begin_inset Formula $N$
|
||
\end_inset
|
||
|
||
už v jiném kontextu?
|
||
\end_layout
|
||
|
||
\end_inset
|
||
|
||
it can be block-diagonalized into eight blocks of size about
|
||
\begin_inset Formula $N/8\times N/8$
|
||
\end_inset
|
||
|
||
, each of which can be LU-factorised separately (this is due to the fact
|
||
that
|
||
\begin_inset Formula $D_{2h}$
|
||
\end_inset
|
||
|
||
has eight different one-dimensional irreducible representations).
|
||
This can reduce both memory and time requirements to solve the scattering
|
||
problem
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "eq:Multiple-scattering problem block form"
|
||
plural "false"
|
||
caps "false"
|
||
noprefix "false"
|
||
|
||
\end_inset
|
||
|
||
by a factor of 64.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
In periodic systems (problems
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "eq:Multiple-scattering problem unit cell block form"
|
||
plural "false"
|
||
caps "false"
|
||
noprefix "false"
|
||
|
||
\end_inset
|
||
|
||
,
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "eq:lattice mode equation"
|
||
plural "false"
|
||
caps "false"
|
||
noprefix "false"
|
||
|
||
\end_inset
|
||
|
||
) due to small number of particles per unit cell, the costliest part is
|
||
usually the evaluation of the lattice sums in the
|
||
\begin_inset Formula $W\left(\omega,\vect k\right)$
|
||
\end_inset
|
||
|
||
matrix, not the linear algebra.
|
||
However, the lattice modes can be searched for in each irrep separately,
|
||
and the irrep dimension gives a priori information about mode degeneracy.
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Finite systems
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Note Note
|
||
status open
|
||
|
||
\begin_layout Plain Layout
|
||
TODO Zkontrolovat všechny vzorečky zde!!!
|
||
\end_layout
|
||
|
||
\end_inset
|
||
|
||
In order to use the point group symmetries, we first need to know how they
|
||
affect our basis functions, i.e.
|
||
the VSWFs.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Let
|
||
\begin_inset Formula $g$
|
||
\end_inset
|
||
|
||
be a member of orthogonal group
|
||
\begin_inset Formula $O(3)$
|
||
\end_inset
|
||
|
||
, i.e.
|
||
a 3D point rotation or reflection operation that transforms vectors in
|
||
|
||
\begin_inset Formula $\reals^{3}$
|
||
\end_inset
|
||
|
||
with an orthogonal matrix
|
||
\begin_inset Formula $R_{g}$
|
||
\end_inset
|
||
|
||
:
|
||
\begin_inset Formula
|
||
\[
|
||
\vect r\mapsto R_{g}\vect r.
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
Spherical harmonics
|
||
\begin_inset Formula $\ush lm$
|
||
\end_inset
|
||
|
||
, being a basis the
|
||
\begin_inset Formula $l$
|
||
\end_inset
|
||
|
||
-dimensional representation of
|
||
\begin_inset Formula $O(3)$
|
||
\end_inset
|
||
|
||
, transform as
|
||
\begin_inset CommandInset citation
|
||
LatexCommand cite
|
||
after "???"
|
||
key "dresselhaus_group_2008"
|
||
literal "false"
|
||
|
||
\end_inset
|
||
|
||
|
||
\begin_inset Formula
|
||
\[
|
||
\ush lm\left(R_{g}\uvec r\right)=\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\ush l{m'}\left(\uvec r\right)
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
where
|
||
\begin_inset Formula $D_{m,m'}^{l}\left(g\right)$
|
||
\end_inset
|
||
|
||
denotes the elements of the
|
||
\emph on
|
||
Wigner matrix
|
||
\emph default
|
||
representing the operation
|
||
\begin_inset Formula $g$
|
||
\end_inset
|
||
|
||
.
|
||
By their definition, vector spherical harmonics
|
||
\begin_inset Formula $\vsh 2lm,\vsh 3lm$
|
||
\end_inset
|
||
|
||
transform in the same way,
|
||
\begin_inset Formula
|
||
\begin{align*}
|
||
\vsh 2lm\left(R_{g}\uvec r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vsh 2l{m'}\left(\uvec r\right),\\
|
||
\vsh 3lm\left(R_{g}\uvec r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vsh 3l{m'}\left(\uvec r\right),
|
||
\end{align*}
|
||
|
||
\end_inset
|
||
|
||
but the remaining set
|
||
\begin_inset Formula $\vsh 1lm$
|
||
\end_inset
|
||
|
||
transforms differently due to their pseudovector nature stemming from the
|
||
cross product in their definition:
|
||
\begin_inset Formula
|
||
\[
|
||
\vsh 3lm\left(R_{g}\uvec r\right)=\sum_{m'=-l}^{l}\widetilde{D_{m,m'}^{l}}\left(g\right)\vsh 3l{m'}\left(\uvec r\right),
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
where
|
||
\begin_inset Formula $\widetilde{D_{m,m'}^{l}}\left(g\right)=D_{m,m'}^{l}\left(g\right)$
|
||
\end_inset
|
||
|
||
if
|
||
\begin_inset Formula $g$
|
||
\end_inset
|
||
|
||
is a proper rotation, but for spatial inversion operation
|
||
\begin_inset Formula $i:\vect r\mapsto-\vect r$
|
||
\end_inset
|
||
|
||
we have
|
||
\begin_inset Formula $\widetilde{D_{m,m'}^{l}}\left(i\right)=\left(-1\right)^{l+m}D_{m,m'}^{l}\left(i\right)$
|
||
\end_inset
|
||
|
||
.
|
||
The transformation behaviour of vector spherical harmonics directly propagates
|
||
to the spherical vector waves, cf.
|
||
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "eq:VSWF regular"
|
||
plural "false"
|
||
caps "false"
|
||
noprefix "false"
|
||
|
||
\end_inset
|
||
|
||
,
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "eq:VSWF outgoing"
|
||
plural "false"
|
||
caps "false"
|
||
noprefix "false"
|
||
|
||
\end_inset
|
||
|
||
:
|
||
\begin_inset Formula
|
||
\begin{align*}
|
||
\vswfouttlm 1lm\left(R_{g}\vect r\right) & =\sum_{m'=-l}^{l}\widetilde{D_{m,m'}^{l}}\left(g\right)\vswfouttlm 1l{m'}\left(\vect r\right),\\
|
||
\vswfouttlm 2lm\left(R_{g}\vect r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vswfouttlm 2l{m'}\left(\vect r\right),
|
||
\end{align*}
|
||
|
||
\end_inset
|
||
|
||
(and analogously for the regular waves
|
||
\begin_inset Formula $\vswfrtlm{\tau}lm$
|
||
\end_inset
|
||
|
||
).
|
||
|
||
\begin_inset Note Note
|
||
status open
|
||
|
||
\begin_layout Plain Layout
|
||
TODO víc obdivu.
|
||
\end_layout
|
||
|
||
\end_inset
|
||
|
||
For convenience, we introduce the symbol
|
||
\begin_inset Formula $D_{m,m'}^{\tau l}$
|
||
\end_inset
|
||
|
||
that describes the transformation of both types (
|
||
\begin_inset Quotes eld
|
||
\end_inset
|
||
|
||
magnetic
|
||
\begin_inset Quotes erd
|
||
\end_inset
|
||
|
||
and
|
||
\begin_inset Quotes eld
|
||
\end_inset
|
||
|
||
electric
|
||
\begin_inset Quotes erd
|
||
\end_inset
|
||
|
||
) of waves at once:
|
||
\begin_inset Formula
|
||
\[
|
||
\vswfouttlm{\tau}lm\left(R_{g}\vect r\right)=\sum_{m'=-l}^{l}D_{m,m'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(\vect r\right).
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
Using these, we can express the VSWF expansion
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "eq:E field expansion"
|
||
plural "false"
|
||
caps "false"
|
||
noprefix "false"
|
||
|
||
\end_inset
|
||
|
||
of the electric field around origin in a rotated/reflected system,
|
||
\begin_inset Formula
|
||
\[
|
||
\vect E\left(\omega,R_{g}\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfrtlm{\tau}lm\left(k\vect r\right)+D_{m,m'}^{\tau l}\left(g\right)\outcoefftlm{\tau}lm\vswfouttlm{\tau}lm\left(k\vect r\right)\right),
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
which, together with the
|
||
\begin_inset Formula $T$
|
||
\end_inset
|
||
|
||
-matrix definition,
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "eq:T-matrix definition"
|
||
plural "false"
|
||
caps "false"
|
||
noprefix "false"
|
||
|
||
\end_inset
|
||
|
||
can be used to obtain a
|
||
\begin_inset Formula $T$
|
||
\end_inset
|
||
|
||
-matrix of a rotated or mirror-reflected particle.
|
||
Let
|
||
\begin_inset Formula $T$
|
||
\end_inset
|
||
|
||
be the
|
||
\begin_inset Formula $T$
|
||
\end_inset
|
||
|
||
-matrix of an original particle; the
|
||
\begin_inset Formula $T$
|
||
\end_inset
|
||
|
||
-matrix of a particle physically transformed by operation
|
||
\begin_inset Formula $g\in O(3)$
|
||
\end_inset
|
||
|
||
is then
|
||
\begin_inset Note Note
|
||
status open
|
||
|
||
\begin_layout Plain Layout
|
||
check sides
|
||
\end_layout
|
||
|
||
\end_inset
|
||
|
||
|
||
\begin_inset Formula
|
||
\begin{equation}
|
||
T'_{\tau lm;\tau'l'm'}=\sum_{\mu=-l}^{l}\sum_{\mu'=-l'}^{l'}\left(D_{\mu,m}^{\tau l}\left(g\right)\right)^{*}T_{\tau l\mu;\tau'l'm'}D_{m',\mu'}^{\tau l}\left(g\right).\label{eq:T-matrix of a transformed particle}
|
||
\end{equation}
|
||
|
||
\end_inset
|
||
|
||
If the particle is symmetric (so that
|
||
\begin_inset Formula $g$
|
||
\end_inset
|
||
|
||
produces a particle indistinguishable from the original one), the
|
||
\begin_inset Formula $T$
|
||
\end_inset
|
||
|
||
-matrix must remain invariant under the transformation
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "eq:T-matrix of a transformed particle"
|
||
plural "false"
|
||
caps "false"
|
||
noprefix "false"
|
||
|
||
\end_inset
|
||
|
||
,
|
||
\begin_inset Formula $T'_{\tau lm;\tau'l'm'}=T{}_{\tau lm;\tau'l'm'}$
|
||
\end_inset
|
||
|
||
.
|
||
Explicit forms of these invariance properties for the most imporant point
|
||
group symmetries can be found in
|
||
\begin_inset CommandInset citation
|
||
LatexCommand cite
|
||
key "schulz_point-group_1999"
|
||
literal "false"
|
||
|
||
\end_inset
|
||
|
||
.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
With these point group transformation properties in hand, we can proceed
|
||
to rotating (or mirror-reflecting) the whole many-particle system.
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Periodic systems
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
|
||
\lang english
|
||
A general overview of utilizing group theory to find lattice modes at high-symme
|
||
try points of the Brillouin zone can be found e.g.
|
||
in
|
||
\begin_inset CommandInset citation
|
||
LatexCommand cite
|
||
after "chapters 10–11"
|
||
key "dresselhaus_group_2008"
|
||
literal "true"
|
||
|
||
\end_inset
|
||
|
||
; here we use the same notation.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
|
||
\lang english
|
||
We analyse the symmetries of the system in the same VSWF representation
|
||
as used in the
|
||
\begin_inset Formula $T$
|
||
\end_inset
|
||
|
||
-matrix formalism introduced above.
|
||
We are interested in the modes at the
|
||
\begin_inset Formula $\Kp$
|
||
\end_inset
|
||
|
||
-point of the hexagonal lattice, which has the
|
||
\begin_inset Formula $D_{3h}$
|
||
\end_inset
|
||
|
||
point symmetry.
|
||
The six irreducible representations (irreps) of the
|
||
\begin_inset Formula $D_{3h}$
|
||
\end_inset
|
||
|
||
group are known and are available in the literature in their explicit forms.
|
||
In order to find and classify the modes, we need to find a decomposition
|
||
of the lattice mode representation
|
||
\begin_inset Formula $\Gamma_{\mathrm{lat.mod.}}=\Gamma^{\mathrm{equiv.}}\otimes\Gamma_{\mathrm{vec.}}$
|
||
\end_inset
|
||
|
||
into the irreps of
|
||
\begin_inset Formula $D_{3h}$
|
||
\end_inset
|
||
|
||
.
|
||
The equivalence representation
|
||
\begin_inset Formula $\Gamma^{\mathrm{equiv.}}$
|
||
\end_inset
|
||
|
||
is the
|
||
\begin_inset Formula $E'$
|
||
\end_inset
|
||
|
||
representation as can be deduced from
|
||
\begin_inset CommandInset citation
|
||
LatexCommand cite
|
||
after "eq. (11.19)"
|
||
key "dresselhaus_group_2008"
|
||
literal "true"
|
||
|
||
\end_inset
|
||
|
||
, eq.
|
||
(11.19) and the character table for
|
||
\begin_inset Formula $D_{3h}$
|
||
\end_inset
|
||
|
||
.
|
||
|
||
\begin_inset Formula $\Gamma_{\mathrm{vec.}}$
|
||
\end_inset
|
||
|
||
operates on a space spanned by the VSWFs around each nanoparticle in the
|
||
unit cell (the effects of point group operations on VSWFs are described
|
||
in
|
||
\begin_inset CommandInset citation
|
||
LatexCommand cite
|
||
key "schulz_point-group_1999"
|
||
literal "true"
|
||
|
||
\end_inset
|
||
|
||
).
|
||
This space can be then decomposed into invariant subspaces of the
|
||
\begin_inset Formula $D_{3h}$
|
||
\end_inset
|
||
|
||
using the projectors
|
||
\begin_inset Formula $\hat{P}_{ab}^{\left(\Gamma\right)}$
|
||
\end_inset
|
||
|
||
defined by
|
||
\begin_inset CommandInset citation
|
||
LatexCommand cite
|
||
after "eq. (4.28)"
|
||
key "dresselhaus_group_2008"
|
||
literal "true"
|
||
|
||
\end_inset
|
||
|
||
.
|
||
This way, we obtain a symmetry adapted basis
|
||
\begin_inset Formula $\left\{ \vect b_{\Gamma,r,i}^{\mathrm{s.a.b.}}\right\} $
|
||
\end_inset
|
||
|
||
as linear combinations of VSWFs
|
||
\begin_inset Formula $\vswfs lm{p,t}$
|
||
\end_inset
|
||
|
||
around the constituting nanoparticles (labeled
|
||
\begin_inset Formula $p$
|
||
\end_inset
|
||
|
||
),
|
||
\begin_inset Formula
|
||
\[
|
||
\vect b_{\Gamma,r,i}^{\mathrm{s.a.b.}}=\sum_{l,m,p,t}U_{\Gamma,r,i}^{p,t,l,m}\vswfs lm{p,t},
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
where
|
||
\begin_inset Formula $\Gamma$
|
||
\end_inset
|
||
|
||
stands for one of the six different irreps of
|
||
\begin_inset Formula $D_{3h}$
|
||
\end_inset
|
||
|
||
,
|
||
\begin_inset Formula $r$
|
||
\end_inset
|
||
|
||
labels the different realisations of the same irrep, and the last index
|
||
|
||
\begin_inset Formula $i$
|
||
\end_inset
|
||
|
||
going from 1 to
|
||
\begin_inset Formula $d_{\Gamma}$
|
||
\end_inset
|
||
|
||
(the dimensionality of
|
||
\begin_inset Formula $\Gamma$
|
||
\end_inset
|
||
|
||
) labels the different partners of the same given irrep.
|
||
The number of how many times is each irrep contained in
|
||
\begin_inset Formula $\Gamma_{\mathrm{lat.mod.}}$
|
||
\end_inset
|
||
|
||
(i.e.
|
||
the range of index
|
||
\begin_inset Formula $r$
|
||
\end_inset
|
||
|
||
for given
|
||
\begin_inset Formula $\Gamma$
|
||
\end_inset
|
||
|
||
) depends on the multipole degree cutoff
|
||
\begin_inset Formula $l_{\mathrm{max}}$
|
||
\end_inset
|
||
|
||
.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
|
||
\lang english
|
||
Each mode at the
|
||
\begin_inset Formula $\Kp$
|
||
\end_inset
|
||
|
||
-point shall lie in the irreducible spaces of only one of the six possible
|
||
irreps and it can be shown via
|
||
\begin_inset CommandInset citation
|
||
LatexCommand cite
|
||
after "eq. (2.51)"
|
||
key "dresselhaus_group_2008"
|
||
literal "true"
|
||
|
||
\end_inset
|
||
|
||
that, at the
|
||
\begin_inset Formula $\Kp$
|
||
\end_inset
|
||
|
||
-point, the matrix
|
||
\begin_inset Formula $M\left(\omega,\vect k\right)$
|
||
\end_inset
|
||
|
||
defined above takes a block-diagonal form in the symmetry-adapted basis,
|
||
|
||
\begin_inset Formula
|
||
\[
|
||
M\left(\omega,\vect K\right)_{\Gamma,r,i;\Gamma',r',j}^{\mathrm{s.a.b.}}=\frac{\delta_{\Gamma\Gamma'}\delta_{ij}}{d_{\Gamma}}\sum_{q}M\left(\omega,\vect K\right)_{\Gamma,r,q;\Gamma',r',q}^{\mathrm{s.a.b.}}.
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
This enables us to decompose the matrix according to the irreps and to solve
|
||
the singular value problem in each irrep separately, as done in Fig.
|
||
|
||
\begin_inset CommandInset ref
|
||
LatexCommand ref
|
||
reference "smfig:dispersions"
|
||
|
||
\end_inset
|
||
|
||
(a).
|
||
\end_layout
|
||
|
||
\end_body
|
||
\end_document
|