qpms/lepaper/symmetries.lyx

722 lines
15 KiB
Plaintext
Raw Normal View History

#LyX 2.4 created this file. For more info see https://www.lyx.org/
\lyxformat 584
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language finnish
\language_package default
\inputencoding utf8
\fontencoding auto
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_roman_osf false
\font_sans_osf false
\font_typewriter_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\use_lineno 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tablestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Section
Symmetries
\begin_inset CommandInset label
LatexCommand label
name "sec:Symmetries"
\end_inset
\end_layout
\begin_layout Standard
If the system has nontrivial point group symmetries, group theory gives
additional understanding of the system properties, and can be used to reduce
the computational costs.
\end_layout
\begin_layout Standard
As an example, if our system has a
\begin_inset Formula $D_{2h}$
\end_inset
symmetry and our truncated
\begin_inset Formula $\left(I-T\trops\right)$
\end_inset
matrix has size
\begin_inset Formula $N\times N$
\end_inset
,
\begin_inset Note Note
status open
\begin_layout Plain Layout
nepoužívám
\begin_inset Formula $N$
\end_inset
už v jiném kontextu?
\end_layout
\end_inset
it can be block-diagonalized into eight blocks of size about
\begin_inset Formula $N/8\times N/8$
\end_inset
, each of which can be LU-factorised separately (this is due to the fact
that
\begin_inset Formula $D_{2h}$
\end_inset
has eight different one-dimensional irreducible representations).
This can reduce both memory and time requirements to solve the scattering
problem
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Multiple-scattering problem block form"
plural "false"
caps "false"
noprefix "false"
\end_inset
by a factor of 64.
\end_layout
\begin_layout Standard
In periodic systems (problems
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Multiple-scattering problem unit cell block form"
plural "false"
caps "false"
noprefix "false"
\end_inset
,
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:lattice mode equation"
plural "false"
caps "false"
noprefix "false"
\end_inset
) due to small number of particles per unit cell, the costliest part is
usually the evaluation of the lattice sums in the
\begin_inset Formula $W\left(\omega,\vect k\right)$
\end_inset
matrix, not the linear algebra.
However, the lattice modes can be searched for in each irrep separately,
and the irrep dimension gives a priori information about mode degeneracy.
\end_layout
\begin_layout Subsection
Finite systems
\end_layout
\begin_layout Standard
\begin_inset Note Note
status open
\begin_layout Plain Layout
TODO Zkontrolovat všechny vzorečky zde!!!
\end_layout
\end_inset
In order to use the point group symmetries, we first need to know how they
affect our basis functions, i.e.
the VSWFs.
\end_layout
\begin_layout Standard
Let
\begin_inset Formula $g$
\end_inset
be a member of orthogonal group
\begin_inset Formula $O(3)$
\end_inset
, i.e.
a 3D point rotation or reflection operation that transforms vectors in
\begin_inset Formula $\reals^{3}$
\end_inset
with an orthogonal matrix
\begin_inset Formula $R_{g}$
\end_inset
:
\begin_inset Formula
\[
\vect r\mapsto R_{g}\vect r.
\]
\end_inset
Spherical harmonics
\begin_inset Formula $\ush lm$
\end_inset
, being a basis the
\begin_inset Formula $l$
\end_inset
-dimensional representation of
\begin_inset Formula $O(3)$
\end_inset
, transform as
\begin_inset CommandInset citation
LatexCommand cite
after "???"
key "dresselhaus_group_2008"
literal "false"
\end_inset
\begin_inset Formula
\[
\ush lm\left(R_{g}\uvec r\right)=\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\ush l{m'}\left(\uvec r\right)
\]
\end_inset
where
\begin_inset Formula $D_{m,m'}^{l}\left(g\right)$
\end_inset
denotes the elements of the
\emph on
Wigner matrix
\emph default
representing the operation
\begin_inset Formula $g$
\end_inset
.
By their definition, vector spherical harmonics
\begin_inset Formula $\vsh 2lm,\vsh 3lm$
\end_inset
transform in the same way,
\begin_inset Formula
\begin{align*}
\vsh 2lm\left(R_{g}\uvec r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vsh 2l{m'}\left(\uvec r\right),\\
\vsh 3lm\left(R_{g}\uvec r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vsh 3l{m'}\left(\uvec r\right),
\end{align*}
\end_inset
but the remaining set
\begin_inset Formula $\vsh 1lm$
\end_inset
transforms differently due to their pseudovector nature stemming from the
cross product in their definition:
\begin_inset Formula
\[
\vsh 3lm\left(R_{g}\uvec r\right)=\sum_{m'=-l}^{l}\widetilde{D_{m,m'}^{l}}\left(g\right)\vsh 3l{m'}\left(\uvec r\right),
\]
\end_inset
where
\begin_inset Formula $\widetilde{D_{m,m'}^{l}}\left(g\right)=D_{m,m'}^{l}\left(g\right)$
\end_inset
if
\begin_inset Formula $g$
\end_inset
is a proper rotation, but for spatial inversion operation
\begin_inset Formula $i:\vect r\mapsto-\vect r$
\end_inset
we have
\begin_inset Formula $\widetilde{D_{m,m'}^{l}}\left(i\right)=\left(-1\right)^{l+m}D_{m,m'}^{l}\left(i\right)$
\end_inset
.
The transformation behaviour of vector spherical harmonics directly propagates
to the spherical vector waves, cf.
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:VSWF regular"
plural "false"
caps "false"
noprefix "false"
\end_inset
,
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:VSWF outgoing"
plural "false"
caps "false"
noprefix "false"
\end_inset
:
\begin_inset Formula
\begin{align*}
\vswfouttlm 1lm\left(R_{g}\vect r\right) & =\sum_{m'=-l}^{l}\widetilde{D_{m,m'}^{l}}\left(g\right)\vswfouttlm 1l{m'}\left(\vect r\right),\\
\vswfouttlm 2lm\left(R_{g}\vect r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vswfouttlm 2l{m'}\left(\vect r\right),
\end{align*}
\end_inset
(and analogously for the regular waves
\begin_inset Formula $\vswfrtlm{\tau}lm$
\end_inset
).
\begin_inset Note Note
status open
\begin_layout Plain Layout
TODO víc obdivu.
\end_layout
\end_inset
For convenience, we introduce the symbol
\begin_inset Formula $D_{m,m'}^{\tau l}$
\end_inset
that describes the transformation of both types (
\begin_inset Quotes eld
\end_inset
magnetic
\begin_inset Quotes erd
\end_inset
and
\begin_inset Quotes eld
\end_inset
electric
\begin_inset Quotes erd
\end_inset
) of waves at once:
\begin_inset Formula
\[
\vswfouttlm{\tau}lm\left(R_{g}\vect r\right)=\sum_{m'=-l}^{l}D_{m,m'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(\vect r\right).
\]
\end_inset
Using these, we can express the VSWF expansion
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:E field expansion"
plural "false"
caps "false"
noprefix "false"
\end_inset
of the electric field around origin in a rotated/reflected system,
\begin_inset Formula
\[
\vect E\left(\omega,R_{g}\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfrtlm{\tau}lm\left(k\vect r\right)+D_{m,m'}^{\tau l}\left(g\right)\outcoefftlm{\tau}lm\vswfouttlm{\tau}lm\left(k\vect r\right)\right),
\]
\end_inset
which, together with the
\begin_inset Formula $T$
\end_inset
-matrix definition,
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:T-matrix definition"
plural "false"
caps "false"
noprefix "false"
\end_inset
can be used to obtain a
\begin_inset Formula $T$
\end_inset
-matrix of a rotated or mirror-reflected particle.
Let
\begin_inset Formula $T$
\end_inset
be the
\begin_inset Formula $T$
\end_inset
-matrix of an original particle; the
\begin_inset Formula $T$
\end_inset
-matrix of a particle physically transformed by operation
\begin_inset Formula $g\in O(3)$
\end_inset
is then
\begin_inset Note Note
status open
\begin_layout Plain Layout
check sides
\end_layout
\end_inset
\begin_inset Formula
\begin{equation}
T'_{\tau lm;\tau'l'm'}=\sum_{\mu=-l}^{l}\sum_{\mu'=-l'}^{l'}\left(D_{\mu,m}^{\tau l}\left(g\right)\right)^{*}T_{\tau l\mu;\tau'l'm'}D_{m',\mu'}^{\tau l}\left(g\right).\label{eq:T-matrix of a transformed particle}
\end{equation}
\end_inset
If the particle is symmetric (so that
\begin_inset Formula $g$
\end_inset
produces a particle indistinguishable from the original one), the
\begin_inset Formula $T$
\end_inset
-matrix must remain invariant under the transformation
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:T-matrix of a transformed particle"
plural "false"
caps "false"
noprefix "false"
\end_inset
,
\begin_inset Formula $T'_{\tau lm;\tau'l'm'}=T{}_{\tau lm;\tau'l'm'}$
\end_inset
.
Explicit forms of these invariance properties for the most imporant point
group symmetries can be found in
\begin_inset CommandInset citation
LatexCommand cite
key "schulz_point-group_1999"
literal "false"
\end_inset
.
\end_layout
\begin_layout Standard
With these point group transformation properties in hand, we can proceed
to rotating (or mirror-reflecting) the whole many-particle system.
\end_layout
\begin_layout Subsection
Periodic systems
\end_layout
\begin_layout Standard
\lang english
A general overview of utilizing group theory to find lattice modes at high-symme
try points of the Brillouin zone can be found e.g.
in
\begin_inset CommandInset citation
LatexCommand cite
after "chapters 1011"
key "dresselhaus_group_2008"
literal "true"
\end_inset
; here we use the same notation.
\end_layout
\begin_layout Standard
\lang english
We analyse the symmetries of the system in the same VSWF representation
as used in the
\begin_inset Formula $T$
\end_inset
-matrix formalism introduced above.
We are interested in the modes at the
\begin_inset Formula $\Kp$
\end_inset
-point of the hexagonal lattice, which has the
\begin_inset Formula $D_{3h}$
\end_inset
point symmetry.
The six irreducible representations (irreps) of the
\begin_inset Formula $D_{3h}$
\end_inset
group are known and are available in the literature in their explicit forms.
In order to find and classify the modes, we need to find a decomposition
of the lattice mode representation
\begin_inset Formula $\Gamma_{\mathrm{lat.mod.}}=\Gamma^{\mathrm{equiv.}}\otimes\Gamma_{\mathrm{vec.}}$
\end_inset
into the irreps of
\begin_inset Formula $D_{3h}$
\end_inset
.
The equivalence representation
\begin_inset Formula $\Gamma^{\mathrm{equiv.}}$
\end_inset
is the
\begin_inset Formula $E'$
\end_inset
representation as can be deduced from
\begin_inset CommandInset citation
LatexCommand cite
after "eq. (11.19)"
key "dresselhaus_group_2008"
literal "true"
\end_inset
, eq.
(11.19) and the character table for
\begin_inset Formula $D_{3h}$
\end_inset
.
\begin_inset Formula $\Gamma_{\mathrm{vec.}}$
\end_inset
operates on a space spanned by the VSWFs around each nanoparticle in the
unit cell (the effects of point group operations on VSWFs are described
in
\begin_inset CommandInset citation
LatexCommand cite
key "schulz_point-group_1999"
literal "true"
\end_inset
).
This space can be then decomposed into invariant subspaces of the
\begin_inset Formula $D_{3h}$
\end_inset
using the projectors
\begin_inset Formula $\hat{P}_{ab}^{\left(\Gamma\right)}$
\end_inset
defined by
\begin_inset CommandInset citation
LatexCommand cite
after "eq. (4.28)"
key "dresselhaus_group_2008"
literal "true"
\end_inset
.
This way, we obtain a symmetry adapted basis
\begin_inset Formula $\left\{ \vect b_{\Gamma,r,i}^{\mathrm{s.a.b.}}\right\} $
\end_inset
as linear combinations of VSWFs
\begin_inset Formula $\vswfs lm{p,t}$
\end_inset
around the constituting nanoparticles (labeled
\begin_inset Formula $p$
\end_inset
),
\begin_inset Formula
\[
\vect b_{\Gamma,r,i}^{\mathrm{s.a.b.}}=\sum_{l,m,p,t}U_{\Gamma,r,i}^{p,t,l,m}\vswfs lm{p,t},
\]
\end_inset
where
\begin_inset Formula $\Gamma$
\end_inset
stands for one of the six different irreps of
\begin_inset Formula $D_{3h}$
\end_inset
,
\begin_inset Formula $r$
\end_inset
labels the different realisations of the same irrep, and the last index
\begin_inset Formula $i$
\end_inset
going from 1 to
\begin_inset Formula $d_{\Gamma}$
\end_inset
(the dimensionality of
\begin_inset Formula $\Gamma$
\end_inset
) labels the different partners of the same given irrep.
The number of how many times is each irrep contained in
\begin_inset Formula $\Gamma_{\mathrm{lat.mod.}}$
\end_inset
(i.e.
the range of index
\begin_inset Formula $r$
\end_inset
for given
\begin_inset Formula $\Gamma$
\end_inset
) depends on the multipole degree cutoff
\begin_inset Formula $l_{\mathrm{max}}$
\end_inset
.
\end_layout
\begin_layout Standard
\lang english
Each mode at the
\begin_inset Formula $\Kp$
\end_inset
-point shall lie in the irreducible spaces of only one of the six possible
irreps and it can be shown via
\begin_inset CommandInset citation
LatexCommand cite
after "eq. (2.51)"
key "dresselhaus_group_2008"
literal "true"
\end_inset
that, at the
\begin_inset Formula $\Kp$
\end_inset
-point, the matrix
\begin_inset Formula $M\left(\omega,\vect k\right)$
\end_inset
defined above takes a block-diagonal form in the symmetry-adapted basis,
\begin_inset Formula
\[
M\left(\omega,\vect K\right)_{\Gamma,r,i;\Gamma',r',j}^{\mathrm{s.a.b.}}=\frac{\delta_{\Gamma\Gamma'}\delta_{ij}}{d_{\Gamma}}\sum_{q}M\left(\omega,\vect K\right)_{\Gamma,r,q;\Gamma',r',q}^{\mathrm{s.a.b.}}.
\]
\end_inset
This enables us to decompose the matrix according to the irreps and to solve
the singular value problem in each irrep separately, as done in Fig.
\begin_inset CommandInset ref
LatexCommand ref
reference "smfig:dispersions"
\end_inset
(a).
\end_layout
\end_body
\end_document