Symmetries text in progress.

Former-commit-id: ecf71fe4af190cb6a3c1ed2c876183d01fbe6448
This commit is contained in:
Marek Nečada 2019-08-01 06:48:10 +03:00
parent 36cc152166
commit 526e108ec0
2 changed files with 317 additions and 8 deletions

View File

@ -723,7 +723,11 @@ Truncation notation.
\end_layout \end_layout
\begin_layout Itemize \begin_layout Itemize
Example results. Example results!
\end_layout
\begin_layout Itemize
Figures.
\end_layout \end_layout
\begin_layout Itemize \begin_layout Itemize
@ -738,7 +742,7 @@ Fix and unify notation (mainly indices) in infinite lattices section.
Carefully check the transformation directions in sec. Carefully check the transformation directions in sec.
\begin_inset CommandInset ref \begin_inset CommandInset ref
LatexCommand eqref LatexCommand ref
reference "sec:Symmetries" reference "sec:Symmetries"
plural "false" plural "false"
caps "false" caps "false"
@ -749,6 +753,11 @@ noprefix "false"
\end_layout \end_layout
\begin_layout Itemize
The text about symmetries is pretty dense.
Make it more explanatory and human-readable.
\end_layout
\begin_layout Standard \begin_layout Standard
\begin_inset CommandInset include \begin_inset CommandInset include
LatexCommand include LatexCommand include

View File

@ -180,7 +180,7 @@ noprefix "false"
\end_layout \end_layout
\begin_layout Subsection \begin_layout Subsection
Finite systems Excitation coefficients under point group operations
\end_layout \end_layout
\begin_layout Standard \begin_layout Standard
@ -397,7 +397,7 @@ noprefix "false"
of the electric field around origin in a rotated/reflected system, of the electric field around origin in a rotated/reflected system,
\begin_inset Formula \begin_inset Formula
\[ \[
\vect E\left(\omega,R_{g}\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfrtlm{\tau}lm\left(k\vect r\right)+D_{m,m'}^{\tau l}\left(g\right)\outcoefftlm{\tau}lm\vswfouttlm{\tau}lm\left(k\vect r\right)\right), \vect E\left(\omega,R_{g}\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\vect r\right)+\outcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\vect r\right)\right),
\] \]
\end_inset \end_inset
@ -491,8 +491,297 @@ literal "false"
\end_layout \end_layout
\begin_layout Standard \begin_layout Standard
With these point group transformation properties in hand, we can proceed If the field expansion is done around a point
to rotating (or mirror-reflecting) the whole many-particle system. \begin_inset Formula $\vect r_{p}$
\end_inset
different from the global origin, as in
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:E field expansion multiparticle"
plural "false"
caps "false"
noprefix "false"
\end_inset
, we have
\lang english
\begin_inset Formula
\begin{align}
\vect E\left(\omega,R_{g}\vect r\right) & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m',\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)+\outcoeffptlm p{\tau}lmD_{m',\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)\right).\label{eq:rotated E field expansion around outside origin}
\end{align}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Float figure
placement document
alignment document
wide false
sideways false
status open
\begin_layout Plain Layout
\begin_inset Caption Standard
\begin_layout Plain Layout
Scatterer orbits under
\begin_inset Formula $D_{2}$
\end_inset
symmetry.
Particles
\begin_inset Formula $A,B,C,D$
\end_inset
lie outside of origin or any mirror planes, and together constitute an
orbit of the size equal to the order of the group,
\begin_inset Formula $\left|D_{2}\right|=4$
\end_inset
.
Particles
\begin_inset Formula $E,F$
\end_inset
lie on the
\begin_inset Formula $xz$
\end_inset
plane, hence the corresponding reflection maps each of them to itself,
but the
\begin_inset Formula $yz$
\end_inset
reflection (or the
\begin_inset Formula $\pi$
\end_inset
rotation around the
\begin_inset Formula $z$
\end_inset
axis) maps them to each other, forming a particle orbit of size 2
\begin_inset Note Note
status open
\begin_layout Plain Layout
=???
\end_layout
\end_inset
.
The particle
\begin_inset Formula $O$
\end_inset
in the very origin is always mapped to itself, constituting its own orbit.
\begin_inset CommandInset label
LatexCommand label
name "fig:D2-symmetric structure particle orbits"
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Note Note
status open
\begin_layout Plain Layout
TODO restructure this
\end_layout
\end_inset
With these transformation properties in hand, we can proceed to the effects
of point symmetries on the whole many-particle system.
Let us have a many-particle system symmetric with respect to a point group
\begin_inset Formula $G$
\end_inset
.
A symmetry operation
\begin_inset Formula $g\in G$
\end_inset
determines a permutation of the particles:
\begin_inset Formula $p\mapsto\pi_{g}(p)$
\end_inset
,
\begin_inset Formula $p\in\mathcal{P}$
\end_inset
.
For a given particle
\begin_inset Formula $p$
\end_inset
, we will call the set of particles onto which any of the symmetries maps
the particle
\begin_inset Formula $p$
\end_inset
, i.e.
the set
\begin_inset Formula $\left\{ \pi_{g}\left(p\right);g\in G\right\} $
\end_inset
, as the
\emph on
orbit
\emph default
of particle
\begin_inset Formula $p$
\end_inset
.
The whole set
\begin_inset Formula $\mathcal{P}$
\end_inset
can therefore be divided into the different particle orbits; an example
is in Fig.
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:D2-symmetric structure particle orbits"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
The importance of the particle orbits stems from the following: in the
multiple-scattering problem, outside of the scatterers
\begin_inset Note Note
status open
\begin_layout Plain Layout
< FIXME
\end_layout
\end_inset
one has
\lang english
\begin_inset Formula
\begin{align}
\vect E\left(\omega,R_{g}\vect r\right) & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{\pi_{g}(p)}\right)\right)+\outcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{p}\right)\right)\right)\label{eq:rotated E field expansion around outside origin-1}\\
& =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{p}\right)\right)+\outcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{p}\right)\right)\right).
\end{align}
\end_inset
This means that the field expansion coefficients
\begin_inset Formula $\rcoeffp p,\outcoeffp p$
\end_inset
transform as
\begin_inset Formula
\begin{align}
\rcoeffptlm p{\tau}lm & \mapsto\rcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right),\nonumber \\
\outcoeffptlm p{\tau}lm & \mapsto\outcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right).\label{eq:excitation coefficient under symmetry operation}
\end{align}
\end_inset
Obviously, the expansion coefficients belonging to particles in different
orbits do not mix together.
As before, we introduce a short-hand block-matrix notation for
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:excitation coefficient under symmetry operation"
plural "false"
caps "false"
noprefix "false"
\end_inset
(TODO avoid notation clash here in a more consistent and readable way!)
\end_layout
\begin_layout Standard
\lang english
\begin_inset Formula
\begin{align}
\rcoeff & \mapsto J\left(g\right)a,\nonumber \\
\outcoeff & \mapsto J\left(g\right)\outcoeff.\label{eq:excitation coefficient under symmetry operation block form}
\end{align}
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
\lang english
The matrices
\begin_inset Formula $D\left(g\right)$
\end_inset
,
\begin_inset Formula $g\in G$
\end_inset
will play a crucial role blablabla
\end_layout
\end_inset
If the particle indices are ordered in a way that the particles belonging
to the same orbit are grouped together,
\begin_inset Formula $J\left(g\right)$
\end_inset
will be a block-diagonal matrix, each block representing one particle orbit.
\end_layout
\begin_layout Subsection
Irrep decomposition
\end_layout
\begin_layout Standard
Knowledge of symmetry group actions
\begin_inset Formula $D\left(g\right)$
\end_inset
on the field expansion coefficients give us the possibility to construct
a symmetry adapted basis in which we can block-diagonalise the multiple-scatter
ing problem matrix
\begin_inset Formula $\left(I-TS\right)$
\end_inset
.
\end_layout
\begin_layout Standard
\end_layout \end_layout
\begin_layout Subsection \begin_layout Subsection
@ -501,6 +790,12 @@ Periodic systems
\begin_layout Standard \begin_layout Standard
\lang english
\begin_inset Note Note
status open
\begin_layout Plain Layout
\lang english \lang english
A general overview of utilizing group theory to find lattice modes at high-symme A general overview of utilizing group theory to find lattice modes at high-symme
try points of the Brillouin zone can be found e.g. try points of the Brillouin zone can be found e.g.
@ -516,7 +811,7 @@ literal "true"
; here we use the same notation. ; here we use the same notation.
\end_layout \end_layout
\begin_layout Standard \begin_layout Plain Layout
\lang english \lang english
We analyse the symmetries of the system in the same VSWF representation We analyse the symmetries of the system in the same VSWF representation
@ -671,7 +966,7 @@ where
. .
\end_layout \end_layout
\begin_layout Standard \begin_layout Plain Layout
\lang english \lang english
Each mode at the Each mode at the
@ -717,5 +1012,10 @@ reference "smfig:dispersions"
(a). (a).
\end_layout \end_layout
\end_inset
\end_layout
\end_body \end_body
\end_document \end_document