Symmetries text in progress.

Former-commit-id: ecf71fe4af190cb6a3c1ed2c876183d01fbe6448
This commit is contained in:
Marek Nečada 2019-08-01 06:48:10 +03:00
parent 36cc152166
commit 526e108ec0
2 changed files with 317 additions and 8 deletions

View File

@ -723,7 +723,11 @@ Truncation notation.
\end_layout
\begin_layout Itemize
Example results.
Example results!
\end_layout
\begin_layout Itemize
Figures.
\end_layout
\begin_layout Itemize
@ -738,7 +742,7 @@ Fix and unify notation (mainly indices) in infinite lattices section.
Carefully check the transformation directions in sec.
\begin_inset CommandInset ref
LatexCommand eqref
LatexCommand ref
reference "sec:Symmetries"
plural "false"
caps "false"
@ -749,6 +753,11 @@ noprefix "false"
\end_layout
\begin_layout Itemize
The text about symmetries is pretty dense.
Make it more explanatory and human-readable.
\end_layout
\begin_layout Standard
\begin_inset CommandInset include
LatexCommand include

View File

@ -180,7 +180,7 @@ noprefix "false"
\end_layout
\begin_layout Subsection
Finite systems
Excitation coefficients under point group operations
\end_layout
\begin_layout Standard
@ -397,7 +397,7 @@ noprefix "false"
of the electric field around origin in a rotated/reflected system,
\begin_inset Formula
\[
\vect E\left(\omega,R_{g}\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfrtlm{\tau}lm\left(k\vect r\right)+D_{m,m'}^{\tau l}\left(g\right)\outcoefftlm{\tau}lm\vswfouttlm{\tau}lm\left(k\vect r\right)\right),
\vect E\left(\omega,R_{g}\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\vect r\right)+\outcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\vect r\right)\right),
\]
\end_inset
@ -491,8 +491,297 @@ literal "false"
\end_layout
\begin_layout Standard
With these point group transformation properties in hand, we can proceed
to rotating (or mirror-reflecting) the whole many-particle system.
If the field expansion is done around a point
\begin_inset Formula $\vect r_{p}$
\end_inset
different from the global origin, as in
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:E field expansion multiparticle"
plural "false"
caps "false"
noprefix "false"
\end_inset
, we have
\lang english
\begin_inset Formula
\begin{align}
\vect E\left(\omega,R_{g}\vect r\right) & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m',\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)+\outcoeffptlm p{\tau}lmD_{m',\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)\right).\label{eq:rotated E field expansion around outside origin}
\end{align}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Float figure
placement document
alignment document
wide false
sideways false
status open
\begin_layout Plain Layout
\begin_inset Caption Standard
\begin_layout Plain Layout
Scatterer orbits under
\begin_inset Formula $D_{2}$
\end_inset
symmetry.
Particles
\begin_inset Formula $A,B,C,D$
\end_inset
lie outside of origin or any mirror planes, and together constitute an
orbit of the size equal to the order of the group,
\begin_inset Formula $\left|D_{2}\right|=4$
\end_inset
.
Particles
\begin_inset Formula $E,F$
\end_inset
lie on the
\begin_inset Formula $xz$
\end_inset
plane, hence the corresponding reflection maps each of them to itself,
but the
\begin_inset Formula $yz$
\end_inset
reflection (or the
\begin_inset Formula $\pi$
\end_inset
rotation around the
\begin_inset Formula $z$
\end_inset
axis) maps them to each other, forming a particle orbit of size 2
\begin_inset Note Note
status open
\begin_layout Plain Layout
=???
\end_layout
\end_inset
.
The particle
\begin_inset Formula $O$
\end_inset
in the very origin is always mapped to itself, constituting its own orbit.
\begin_inset CommandInset label
LatexCommand label
name "fig:D2-symmetric structure particle orbits"
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Note Note
status open
\begin_layout Plain Layout
TODO restructure this
\end_layout
\end_inset
With these transformation properties in hand, we can proceed to the effects
of point symmetries on the whole many-particle system.
Let us have a many-particle system symmetric with respect to a point group
\begin_inset Formula $G$
\end_inset
.
A symmetry operation
\begin_inset Formula $g\in G$
\end_inset
determines a permutation of the particles:
\begin_inset Formula $p\mapsto\pi_{g}(p)$
\end_inset
,
\begin_inset Formula $p\in\mathcal{P}$
\end_inset
.
For a given particle
\begin_inset Formula $p$
\end_inset
, we will call the set of particles onto which any of the symmetries maps
the particle
\begin_inset Formula $p$
\end_inset
, i.e.
the set
\begin_inset Formula $\left\{ \pi_{g}\left(p\right);g\in G\right\} $
\end_inset
, as the
\emph on
orbit
\emph default
of particle
\begin_inset Formula $p$
\end_inset
.
The whole set
\begin_inset Formula $\mathcal{P}$
\end_inset
can therefore be divided into the different particle orbits; an example
is in Fig.
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:D2-symmetric structure particle orbits"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
The importance of the particle orbits stems from the following: in the
multiple-scattering problem, outside of the scatterers
\begin_inset Note Note
status open
\begin_layout Plain Layout
< FIXME
\end_layout
\end_inset
one has
\lang english
\begin_inset Formula
\begin{align}
\vect E\left(\omega,R_{g}\vect r\right) & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{\pi_{g}(p)}\right)\right)+\outcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{p}\right)\right)\right)\label{eq:rotated E field expansion around outside origin-1}\\
& =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{p}\right)\right)+\outcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{p}\right)\right)\right).
\end{align}
\end_inset
This means that the field expansion coefficients
\begin_inset Formula $\rcoeffp p,\outcoeffp p$
\end_inset
transform as
\begin_inset Formula
\begin{align}
\rcoeffptlm p{\tau}lm & \mapsto\rcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right),\nonumber \\
\outcoeffptlm p{\tau}lm & \mapsto\outcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right).\label{eq:excitation coefficient under symmetry operation}
\end{align}
\end_inset
Obviously, the expansion coefficients belonging to particles in different
orbits do not mix together.
As before, we introduce a short-hand block-matrix notation for
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:excitation coefficient under symmetry operation"
plural "false"
caps "false"
noprefix "false"
\end_inset
(TODO avoid notation clash here in a more consistent and readable way!)
\end_layout
\begin_layout Standard
\lang english
\begin_inset Formula
\begin{align}
\rcoeff & \mapsto J\left(g\right)a,\nonumber \\
\outcoeff & \mapsto J\left(g\right)\outcoeff.\label{eq:excitation coefficient under symmetry operation block form}
\end{align}
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
\lang english
The matrices
\begin_inset Formula $D\left(g\right)$
\end_inset
,
\begin_inset Formula $g\in G$
\end_inset
will play a crucial role blablabla
\end_layout
\end_inset
If the particle indices are ordered in a way that the particles belonging
to the same orbit are grouped together,
\begin_inset Formula $J\left(g\right)$
\end_inset
will be a block-diagonal matrix, each block representing one particle orbit.
\end_layout
\begin_layout Subsection
Irrep decomposition
\end_layout
\begin_layout Standard
Knowledge of symmetry group actions
\begin_inset Formula $D\left(g\right)$
\end_inset
on the field expansion coefficients give us the possibility to construct
a symmetry adapted basis in which we can block-diagonalise the multiple-scatter
ing problem matrix
\begin_inset Formula $\left(I-TS\right)$
\end_inset
.
\end_layout
\begin_layout Standard
\end_layout
\begin_layout Subsection
@ -501,6 +790,12 @@ Periodic systems
\begin_layout Standard
\lang english
\begin_inset Note Note
status open
\begin_layout Plain Layout
\lang english
A general overview of utilizing group theory to find lattice modes at high-symme
try points of the Brillouin zone can be found e.g.
@ -516,7 +811,7 @@ literal "true"
; here we use the same notation.
\end_layout
\begin_layout Standard
\begin_layout Plain Layout
\lang english
We analyse the symmetries of the system in the same VSWF representation
@ -671,7 +966,7 @@ where
.
\end_layout
\begin_layout Standard
\begin_layout Plain Layout
\lang english
Each mode at the
@ -717,5 +1012,10 @@ reference "smfig:dispersions"
(a).
\end_layout
\end_inset
\end_layout
\end_body
\end_document