Symmetries text in progress.
Former-commit-id: ecf71fe4af190cb6a3c1ed2c876183d01fbe6448
This commit is contained in:
parent
36cc152166
commit
526e108ec0
|
@ -723,7 +723,11 @@ Truncation notation.
|
|||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
Example results.
|
||||
Example results!
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
Figures.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
|
@ -738,7 +742,7 @@ Fix and unify notation (mainly indices) in infinite lattices section.
|
|||
Carefully check the transformation directions in sec.
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
LatexCommand ref
|
||||
reference "sec:Symmetries"
|
||||
plural "false"
|
||||
caps "false"
|
||||
|
@ -749,6 +753,11 @@ noprefix "false"
|
|||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
The text about symmetries is pretty dense.
|
||||
Make it more explanatory and human-readable.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset CommandInset include
|
||||
LatexCommand include
|
||||
|
|
|
@ -180,7 +180,7 @@ noprefix "false"
|
|||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Finite systems
|
||||
Excitation coefficients under point group operations
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
@ -397,7 +397,7 @@ noprefix "false"
|
|||
of the electric field around origin in a rotated/reflected system,
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\vect E\left(\omega,R_{g}\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfrtlm{\tau}lm\left(k\vect r\right)+D_{m,m'}^{\tau l}\left(g\right)\outcoefftlm{\tau}lm\vswfouttlm{\tau}lm\left(k\vect r\right)\right),
|
||||
\vect E\left(\omega,R_{g}\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\vect r\right)+\outcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\vect r\right)\right),
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -491,8 +491,297 @@ literal "false"
|
|||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
With these point group transformation properties in hand, we can proceed
|
||||
to rotating (or mirror-reflecting) the whole many-particle system.
|
||||
If the field expansion is done around a point
|
||||
\begin_inset Formula $\vect r_{p}$
|
||||
\end_inset
|
||||
|
||||
different from the global origin, as in
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:E field expansion multiparticle"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
, we have
|
||||
\lang english
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{align}
|
||||
\vect E\left(\omega,R_{g}\vect r\right) & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m',\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)+\outcoeffptlm p{\tau}lmD_{m',\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)\right).\label{eq:rotated E field expansion around outside origin}
|
||||
\end{align}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Float figure
|
||||
placement document
|
||||
alignment document
|
||||
wide false
|
||||
sideways false
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Caption Standard
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Scatterer orbits under
|
||||
\begin_inset Formula $D_{2}$
|
||||
\end_inset
|
||||
|
||||
symmetry.
|
||||
Particles
|
||||
\begin_inset Formula $A,B,C,D$
|
||||
\end_inset
|
||||
|
||||
lie outside of origin or any mirror planes, and together constitute an
|
||||
orbit of the size equal to the order of the group,
|
||||
\begin_inset Formula $\left|D_{2}\right|=4$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Particles
|
||||
\begin_inset Formula $E,F$
|
||||
\end_inset
|
||||
|
||||
lie on the
|
||||
\begin_inset Formula $xz$
|
||||
\end_inset
|
||||
|
||||
plane, hence the corresponding reflection maps each of them to itself,
|
||||
but the
|
||||
\begin_inset Formula $yz$
|
||||
\end_inset
|
||||
|
||||
reflection (or the
|
||||
\begin_inset Formula $\pi$
|
||||
\end_inset
|
||||
|
||||
rotation around the
|
||||
\begin_inset Formula $z$
|
||||
\end_inset
|
||||
|
||||
axis) maps them to each other, forming a particle orbit of size 2
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
=???
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
The particle
|
||||
\begin_inset Formula $O$
|
||||
\end_inset
|
||||
|
||||
in the very origin is always mapped to itself, constituting its own orbit.
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "fig:D2-symmetric structure particle orbits"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
TODO restructure this
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
With these transformation properties in hand, we can proceed to the effects
|
||||
of point symmetries on the whole many-particle system.
|
||||
Let us have a many-particle system symmetric with respect to a point group
|
||||
|
||||
\begin_inset Formula $G$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
A symmetry operation
|
||||
\begin_inset Formula $g\in G$
|
||||
\end_inset
|
||||
|
||||
determines a permutation of the particles:
|
||||
\begin_inset Formula $p\mapsto\pi_{g}(p)$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $p\in\mathcal{P}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
For a given particle
|
||||
\begin_inset Formula $p$
|
||||
\end_inset
|
||||
|
||||
, we will call the set of particles onto which any of the symmetries maps
|
||||
the particle
|
||||
\begin_inset Formula $p$
|
||||
\end_inset
|
||||
|
||||
, i.e.
|
||||
the set
|
||||
\begin_inset Formula $\left\{ \pi_{g}\left(p\right);g\in G\right\} $
|
||||
\end_inset
|
||||
|
||||
, as the
|
||||
\emph on
|
||||
orbit
|
||||
\emph default
|
||||
of particle
|
||||
\begin_inset Formula $p$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
The whole set
|
||||
\begin_inset Formula $\mathcal{P}$
|
||||
\end_inset
|
||||
|
||||
can therefore be divided into the different particle orbits; an example
|
||||
is in Fig.
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "fig:D2-symmetric structure particle orbits"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
The importance of the particle orbits stems from the following: in the
|
||||
multiple-scattering problem, outside of the scatterers
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
< FIXME
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
one has
|
||||
\lang english
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{align}
|
||||
\vect E\left(\omega,R_{g}\vect r\right) & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{\pi_{g}(p)}\right)\right)+\outcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{p}\right)\right)\right)\label{eq:rotated E field expansion around outside origin-1}\\
|
||||
& =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{p}\right)\right)+\outcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{p}\right)\right)\right).
|
||||
\end{align}
|
||||
|
||||
\end_inset
|
||||
|
||||
This means that the field expansion coefficients
|
||||
\begin_inset Formula $\rcoeffp p,\outcoeffp p$
|
||||
\end_inset
|
||||
|
||||
transform as
|
||||
\begin_inset Formula
|
||||
\begin{align}
|
||||
\rcoeffptlm p{\tau}lm & \mapsto\rcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right),\nonumber \\
|
||||
\outcoeffptlm p{\tau}lm & \mapsto\outcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right).\label{eq:excitation coefficient under symmetry operation}
|
||||
\end{align}
|
||||
|
||||
\end_inset
|
||||
|
||||
Obviously, the expansion coefficients belonging to particles in different
|
||||
orbits do not mix together.
|
||||
As before, we introduce a short-hand block-matrix notation for
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:excitation coefficient under symmetry operation"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
(TODO avoid notation clash here in a more consistent and readable way!)
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
||||
\lang english
|
||||
\begin_inset Formula
|
||||
\begin{align}
|
||||
\rcoeff & \mapsto J\left(g\right)a,\nonumber \\
|
||||
\outcoeff & \mapsto J\left(g\right)\outcoeff.\label{eq:excitation coefficient under symmetry operation block form}
|
||||
\end{align}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
\lang english
|
||||
The matrices
|
||||
\begin_inset Formula $D\left(g\right)$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $g\in G$
|
||||
\end_inset
|
||||
|
||||
will play a crucial role blablabla
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
If the particle indices are ordered in a way that the particles belonging
|
||||
to the same orbit are grouped together,
|
||||
\begin_inset Formula $J\left(g\right)$
|
||||
\end_inset
|
||||
|
||||
will be a block-diagonal matrix, each block representing one particle orbit.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Irrep decomposition
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Knowledge of symmetry group actions
|
||||
\begin_inset Formula $D\left(g\right)$
|
||||
\end_inset
|
||||
|
||||
on the field expansion coefficients give us the possibility to construct
|
||||
a symmetry adapted basis in which we can block-diagonalise the multiple-scatter
|
||||
ing problem matrix
|
||||
\begin_inset Formula $\left(I-TS\right)$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
|
@ -501,6 +790,12 @@ Periodic systems
|
|||
|
||||
\begin_layout Standard
|
||||
|
||||
\lang english
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
\lang english
|
||||
A general overview of utilizing group theory to find lattice modes at high-symme
|
||||
try points of the Brillouin zone can be found e.g.
|
||||
|
@ -516,7 +811,7 @@ literal "true"
|
|||
; here we use the same notation.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_layout Plain Layout
|
||||
|
||||
\lang english
|
||||
We analyse the symmetries of the system in the same VSWF representation
|
||||
|
@ -671,7 +966,7 @@ where
|
|||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_layout Plain Layout
|
||||
|
||||
\lang english
|
||||
Each mode at the
|
||||
|
@ -717,5 +1012,10 @@ reference "smfig:dispersions"
|
|||
(a).
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_body
|
||||
\end_document
|
||||
|
|
Loading…
Reference in New Issue