2017-08-02 19:46:51 +03:00
#LyX 2.1 created this file. For more info see http://www.lyx.org/
\lyxformat 474
\begin_document
\begin_header
\textclass article
\begin_preamble
\usepackage{unicode-math}
% Toto je trik, jimž se z fontspec získá familyname pro následující
\ExplSyntaxOn
\DeclareExpandableDocumentCommand{\getfamilyname}{m}
{
\use:c { g__fontspec_ \cs_to_str:N #1 _family }
}
\ExplSyntaxOff
% definujeme novou rodinu, jež se volá pomocí \MyCyr pro běžné použití, avšak pro účely \DeclareSymbolFont je nutno získat název pomocí getfamilyname definovaného výše
\newfontfamily\MyCyr{CMU Serif}
\DeclareSymbolFont{cyritletters}{EU1}{\getfamilyname\MyCyr}{m}{it}
\newcommand{\makecyrmathletter}[1]{%
\begingroup\lccode`a=#1\lowercase{\endgroup
\Umathcode`a}="0 \csname symcyritletters\endcsname\space #1
}
\count255="409
\loop\ifnum\count255<"44F
\advance\count255 by 1
\makecyrmathletter{\count255}
\repeat
\renewcommand{\lyxmathsym}[1]{#1}
\end_preamble
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman TeX Gyre Pagella
\font_sans default
\font_typewriter default
\font_math default
\font_default_family default
\use_non_tex_fonts true
\font_sc false
\font_osf true
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format pdf4
\output_sync 0
\bibtex_command default
\index_command default
2017-08-03 16:09:54 +03:00
\paperfontsize 10
2017-08-02 19:46:51 +03:00
\spacing single
\use_hyperref true
\pdf_title "Accelerating lattice mode calculations with T-matrix method"
\pdf_author "Marek Nečada"
\pdf_bookmarks true
\pdf_bookmarksnumbered false
\pdf_bookmarksopen false
\pdf_bookmarksopenlevel 1
\pdf_breaklinks false
\pdf_pdfborder false
\pdf_colorlinks false
\pdf_backref false
\pdf_pdfusetitle true
2017-08-03 16:09:54 +03:00
\papersize a5paper
\use_geometry true
2017-08-02 19:46:51 +03:00
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\index Index
\shortcut idx
\color #008000
\end_index
2017-08-03 16:09:54 +03:00
\leftmargin 2cm
\topmargin 2cm
\rightmargin 2cm
\bottommargin 2cm
2017-08-02 19:46:51 +03:00
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Standard
\begin_inset FormulaMacro
\newcommand{\uoft}[1]{\mathfrak{F}#1}
\end_inset
\begin_inset FormulaMacro
\newcommand{\uaft}[1]{\mathfrak{\mathbb{F}}#1}
\end_inset
2017-08-07 22:08:35 +03:00
\begin_inset FormulaMacro
\newcommand{\usht}[2]{\mathbb{S}_{#1}#2}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bsht}[2]{\mathrm{S}_{#1}#2}
\end_inset
\begin_inset FormulaMacro
\newcommand{\pht}[2]{\mathfrak{\mathbb{H}}_{#1}#2}
\end_inset
2017-08-02 19:46:51 +03:00
\begin_inset FormulaMacro
\newcommand{\vect}[1]{\mathbf{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ud}{\mathrm{d}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\basis}[1]{\mathfrak{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\dc}[1]{Ш_{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\rec}[1]{#1^{-1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\recb}[1]{#1^{\widehat{-1}}}
\end_inset
2017-08-07 16:48:37 +03:00
\begin_inset FormulaMacro
\newcommand{\ints}{\mathbb{Z}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\reals}{\mathbb{R}}
\end_inset
2017-08-07 22:08:35 +03:00
\begin_inset FormulaMacro
\newcommand{\ush}[2]{Y_{#1,#2}}
\end_inset
2017-08-02 19:46:51 +03:00
\end_layout
\begin_layout Title
Accelerating lattice mode calculations with
\begin_inset Formula $T$
\end_inset
-matrix method
\end_layout
\begin_layout Author
Marek Nečada
\end_layout
2017-08-07 16:48:37 +03:00
\begin_layout Abstract
The
\begin_inset Formula $T$
\end_inset
-matrix approach is the method of choice for simulating optical response
of a reasonably small system of compact linear scatterers on isotropic
background.
However, its direct utilisation for problems with infinite lattices is
problematic due to slowly converging sums over the lattice.
Here I develop a way to compute the problematic sums in the reciprocal
space, making the
\begin_inset Formula $T$
\end_inset
-matrix method very suitable for infinite periodic systems as well.
\end_layout
2017-08-02 19:46:51 +03:00
\begin_layout Section
Formulation of the problem
\end_layout
\begin_layout Standard
Assume a system of compact EM scatterers in otherwise homogeneous and isotropic
medium, and assume that the system, i.e.
both the medium and the scatterers, have linear response.
A scattering problem in such system can be written as
\begin_inset Formula
\[
A_{α }=T_{α }P_{α }=T_{α }(\sum_{β}S_{α \leftarrowβ}A_{β}+P_{0α })
\]
\end_inset
where
\begin_inset Formula $T_{α }$
\end_inset
is the
\begin_inset Formula $T$
\end_inset
-matrix for scatterer α ,
\begin_inset Formula $A_{α }$
\end_inset
is its vector of the scattered wave expansion coefficient (the multipole
indices are not explicitely indicated here) and
\begin_inset Formula $P_{α }$
\end_inset
is the local expansion of the incoming sources.
\begin_inset Formula $S_{α \leftarrowβ}$
\end_inset
is ...
and ...
is ...
\end_layout
\begin_layout Standard
...
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\sum_{β}(\delta_{αβ}-T_{α }S_{α \leftarrowβ})A_{β}=T_{α }P_{0α }.
\]
\end_inset
\end_layout
\begin_layout Standard
Now suppose that the scatterers constitute an infinite lattice
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{\vect aα }S_{\vect aα \leftarrow\vect bβ})A_{\vect bβ}=T_{\vect aα }P_{0\vect aα }.
\]
\end_inset
Due to the periodicity, we can write
\begin_inset Formula $S_{\vect aα \leftarrow\vect bβ}=S_{α \leftarrowβ}(\vect b-\vect a)$
2017-08-03 16:09:54 +03:00
\end_inset
and
\begin_inset Formula $T_{\vect aα }=T_{\alpha}$
2017-08-02 19:46:51 +03:00
\end_inset
.
In order to find lattice modes, we search for solutions with zero RHS
\begin_inset Formula
\[
2017-08-03 16:09:54 +03:00
\sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{α }S_{\vect aα \leftarrow\vect bβ})A_{\vect bβ}=0
2017-08-02 19:46:51 +03:00
\]
\end_inset
and we assume periodic solution
2017-08-03 16:09:54 +03:00
\begin_inset Formula $A_{\vect b\beta}(\vect k)=A_{\vect a\beta}e^{i\vect k\cdot\vect r_{\vect b-\vect a}}$
2017-08-02 19:46:51 +03:00
\end_inset
2017-08-03 16:09:54 +03:00
, yielding
\begin_inset Formula
\begin{eqnarray*}
\sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{α }S_{\vect aα \leftarrow\vect bβ})A_{\vect a\beta}\left(\vect k\right)e^{i\vect k\cdot\vect r_{\vect b-\vect a}} & = & 0,\\
\sum_{\vect bβ}(\delta_{\vect{0b}}\delta_{αβ}-T_{α }S_{\vect 0α \leftarrow\vect bβ})A_{\vect 0\beta}\left(\vect k\right)e^{i\vect k\cdot\vect r_{\vect b}} & = & 0,\\
\sum_{β}(\delta_{αβ}-T_{α }\underbrace{\sum_{\vect b}S_{\vect 0α \leftarrow\vect bβ}e^{i\vect k\cdot\vect r_{\vect b}}}_{W_{\alpha\beta}(\vect k)})A_{\vect 0\beta}\left(\vect k\right) & = & 0,\\
A_{\vect 0\alpha}\left(\vect k\right)-T_{α }\sum_{\beta}W_{\alpha\beta}\left(\vect k\right)A_{\vect 0\beta}\left(\vect k\right) & = & 0.
\end{eqnarray*}
\end_inset
Therefore, in order to solve the modes, we need to compute the
\begin_inset Quotes eld
\end_inset
lattice Fourier transform
\begin_inset Quotes erd
\end_inset
of the translation operator,
\begin_inset Formula
\begin{equation}
W_{\alpha\beta}(\vect k)\equiv\sum_{\vect b}S_{\vect 0α \leftarrow\vect bβ}e^{i\vect k\cdot\vect r_{\vect b}}.\label{eq:W definition}
\end{equation}
\end_inset
\end_layout
\begin_layout Section
Computing the Fourier sum of the translation operator
\end_layout
\begin_layout Standard
The problem evaluating
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:W definition"
\end_inset
is the asymptotic behaviour of the translation operator,
\begin_inset Formula $S_{\vect 0α \leftarrow\vect bβ}\sim\left|\vect r_{\vect b}\right|^{-1}e^{ik_{0}\left|\vect r_{\vect b}\right|}$
\end_inset
that makes the convergence of the sum quite problematic for any
\begin_inset Formula $d>1$
\end_inset
-dimensional lattice.
2017-08-07 18:11:41 +03:00
\begin_inset Foot
status open
\begin_layout Plain Layout
Note that
\begin_inset Formula $d$
\end_inset
here is dimensionality of the lattice, not the space it lies in, which
I for certain reasons assume to be three.
(TODO few notes on integration and reciprocal lattices in some appendix)
\end_layout
\end_inset
2017-08-07 16:48:37 +03:00
In electrostatics, one can solve this problem with Ewald summation.
2017-08-03 16:09:54 +03:00
Its basic idea is that if what asymptoticaly decays poorly in the direct
space, will perhaps decay fast in the Fourier space.
2017-08-05 09:53:58 +03:00
I use the same idea here, but everything will be somehow harder than in
electrostatics.
\end_layout
\begin_layout Standard
2017-08-05 15:09:43 +03:00
Let us re-express the sum in
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:W definition"
\end_inset
in terms of integral with a delta comb
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
W_{\alpha\beta}(\vect k)=\int\ud^{d}\vect r\dc{\basis u}(\vect r)S(\vect r_{\alpha}\leftarrow\vect r+\vect r_{\beta})e^{i\vect k\cdot\vect r}.\label{eq:W integral}
\end{equation}
\end_inset
The translation operator
\begin_inset Formula $S$
\end_inset
2017-08-07 18:11:41 +03:00
is now a function defined in the whole 3d space;
2017-08-05 15:09:43 +03:00
\begin_inset Formula $\vect r_{\alpha},\vect r_{\beta}$
\end_inset
are the displacements of scatterers
\begin_inset Formula $\alpha$
\end_inset
and
\begin_inset Formula $\beta$
\end_inset
in a unit cell.
The arrow notation
\begin_inset Formula $S(\vect r_{\alpha}\leftarrow\vect r+\vect r_{\beta})$
\end_inset
means
\begin_inset Quotes eld
\end_inset
translation operator for spherical waves originating in
\begin_inset Formula $\vect r+\vect r_{\beta}$
\end_inset
evaluated in
\begin_inset Formula $\vect r_{\alpha}$
\end_inset
\begin_inset Quotes erd
\end_inset
and obviously
\begin_inset Formula $S$
\end_inset
is in fact a function of a single 3d argument,
\begin_inset Formula $S(\vect r_{\alpha}\leftarrow\vect r+\vect r_{\beta})=S(\vect 0\leftarrow\vect r+\vect r_{\beta}-\vect r_{\alpha})=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha})$
\end_inset
.
Expression
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:W integral"
\end_inset
can be rewritten as
\begin_inset Formula
\[
W_{\alpha\beta}(\vect k)=\left(2\pi\right)^{\frac{d}{2}}\uaft{(\dc{\basis u}S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0))\left(\vect k\right)}
\]
\end_inset
where changed the sign of
\begin_inset Formula $\vect r/\vect{\bullet}$
\end_inset
has been swapped under integration, utilising evenness of
\begin_inset Formula $\dc{\basis u}$
\end_inset
.
2017-08-07 16:48:37 +03:00
Fourier transform of product is convolution of Fourier transforms, so (using
formula
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Dirac comb uaFt"
\end_inset
for the Fourier transform of Dirac comb)
2017-08-05 15:09:43 +03:00
\begin_inset Formula
2017-08-07 16:48:37 +03:00
\begin{eqnarray}
W_{\alpha\beta}(\vect k) & = & \left(\left(\uaft{\dc{\basis u}}\right)\ast\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\right)(\vect k)\nonumber \\
& = & \frac{\left|\det\recb{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\left(\dc{\recb{\basis u}}^{(d)}\ast\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\right)\left(\vect k\right)\nonumber \\
& = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\left(\vect k-\vect K\right).\label{eq:W sum in reciprocal space}
\end{eqnarray}
2017-08-05 15:09:43 +03:00
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
Factor
\begin_inset Formula $\left(2\pi\right)^{\frac{d}{2}}$
\end_inset
cancels out with the
\begin_inset Formula $\left(2\pi\right)^{-\frac{d}{2}}$
\end_inset
factor appearing in the convolution/product formula in the unitary angular
momentum convention.
\end_layout
\end_inset
2017-08-07 16:48:37 +03:00
As such, this is not extremely helpful because the the
\emph on
whole
\emph default
translation operator
\begin_inset Formula $S$
\end_inset
has singularities in origin, hence its Fourier transform
\begin_inset Formula $\uaft S$
\end_inset
will decay poorly.
\end_layout
\begin_layout Standard
However, Fourier transform is linear, so we can in principle separate
\begin_inset Formula $S$
\end_inset
in two parts,
\begin_inset Formula $S=S^{\textup{L}}+S^{\textup{S}}$
\end_inset
.
\begin_inset Formula $S^{\textup{S}}$
\end_inset
is a short-range part that decays sufficiently fast with distance so that
its direct-space lattice sum converges well;
\begin_inset Formula $S^{\textup{S}}$
\end_inset
must as well contain all the singularities of
\begin_inset Formula $S$
\end_inset
in the origin.
The other part,
\begin_inset Formula $S^{\textup{L}}$
\end_inset
, will retain all the slowly decaying terms of
\begin_inset Formula $S$
\end_inset
but it also has to be smooth enough in the origin, so that its Fourier
transform
\begin_inset Formula $\uaft{S^{\textup{L}}}$
\end_inset
decays fast enough.
(The same idea lies behind the Ewald summation in electrostatics.) Using
the linearity of Fourier transform and formulae
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:W definition"
\end_inset
and
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:W sum in reciprocal space"
\end_inset
, the operator
\begin_inset Formula $W_{\alpha\beta}$
\end_inset
can then be re-expressed as
\begin_inset Formula
\begin{eqnarray}
W_{\alpha\beta}\left(\vect k\right) & = & W_{\alpha\beta}^{\textup{S}}\left(\vect k\right)+W_{\alpha\beta}^{\textup{L}}\left(\vect k\right)\nonumber \\
W_{\alpha\beta}^{\textup{S}}\left(\vect k\right) & = & \sum_{\vect R\in\basis u\ints^{d}}S^{\textup{S}}(\vect 0\leftarrow\vect R+\vect r_{\beta}-\vect r_{\alpha})e^{i\vect k\cdot\vect R}\label{eq:W Short definition}\\
W_{\alpha\beta}^{\textup{L}}\left(\vect k\right) & = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S^{\textup{L}}(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\left(\vect k-\vect K\right)\label{eq:W Long definition}
\end{eqnarray}
\end_inset
where both sums should converge nicely.
\end_layout
\begin_layout Section
Finding a good decomposition
\end_layout
\begin_layout Standard
2017-08-07 18:11:41 +03:00
The remaining challenge is therefore finding a suitable decomposition
2017-08-07 16:48:37 +03:00
\begin_inset Formula $S^{\textup{L}}+S^{\textup{S}}$
\end_inset
such that both
\begin_inset Formula $S^{\textup{S}}$
\end_inset
and
\begin_inset Formula $\uaft{S^{\textup{L}}}$
\end_inset
decay fast enough with distance and are expressable analytically.
With these requirements, I do not expect to find gaussian asymptotics as
in the electrostatic Ewald formula—having
\begin_inset Formula $\sim x^{-t}$
\end_inset
,
\begin_inset Formula $t>d$
\end_inset
asymptotics would be nice, making the sums in
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:W Short definition"
\end_inset
2017-08-05 09:53:58 +03:00
2017-08-07 16:48:37 +03:00
,
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:W Long definition"
\end_inset
absolutely convergent.
2017-08-05 09:53:58 +03:00
\end_layout
2017-08-07 18:11:41 +03:00
\begin_layout Standard
The translation operator
\begin_inset Formula $S$
\end_inset
for compact scatterers in 3d can be expressed as
\begin_inset Formula
\[
2017-08-07 22:08:35 +03:00
S_{l',m',t'\leftarrow l,m,t}\left(\vect r\leftarrow\vect 0\right)=\sum_{p}c_{p}^{l',m',t'\leftarrow l,m,t}\ush p{m'-m}\left(\theta_{\vect r},\phi_{\vect r}\right)z_{p}^{(J)}\left(\left|\vect r\right|\right)
2017-08-07 18:11:41 +03:00
\]
\end_inset
where
\begin_inset Formula $Y_{l,m}\left(\theta,\phi\right)$
\end_inset
are the spherical harmonics,
\begin_inset Formula $z_{p}^{(J)}\left(r\right)$
\end_inset
some of the Bessel or Hankel functions (TODO) and
\begin_inset Formula $c_{p}^{l,m,t\leftarrow l',m',t'}$
\end_inset
2017-08-07 22:08:35 +03:00
are some ugly but known coefficients (REF Xu 1996, eqs.
2017-08-07 18:11:41 +03:00
76,77).
\end_layout
2017-08-05 09:53:58 +03:00
\begin_layout Section
2017-08-07 22:08:35 +03:00
(Appendix) Fourier vs.
Hankel transform
\end_layout
\begin_layout Subsection
Three dimensions
\end_layout
\begin_layout Standard
Given a nice enough function
\begin_inset Formula $f$
\end_inset
of a real 3d variable, assume its factorisation into radial and angular
parts
\begin_inset Formula
\[
f(\vect r)=\sum_{l,m}f_{l,m}(\left|\vect r\right|)\ush lm\left(\theta_{\vect r},\phi_{\vect r}\right).
\]
\end_inset
Acording to (REF Baddour 2010, eqs.
13, 16), its Fourier transform can then be expressed in terms of Hankel
transforms (CHECK normalisation of
\begin_inset Formula $j_{n}$
\end_inset
, REF Baddour (1))
\begin_inset Formula
\[
\uaft f(\vect k)=\frac{4\pi}{\left(2\pi\right)^{\frac{3}{2}}}\sum_{l,m}\left(-i\right)^{l}\left(\bsht{f_{l,m}}{}\right)\left(\left|\vect k\right|\right)\ush lm\left(\theta_{\vect k},\phi_{\vect k}\right)
\]
\end_inset
where the spherical Hankel transform
\begin_inset Formula $\bsht l{}$
\end_inset
of degree
\begin_inset Formula $l$
\end_inset
is defined as (REF Baddour eq.
2)
\begin_inset Formula
\[
\bsht lg(k)\equiv\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).
\]
\end_inset
Using this convention, the inverse spherical Hankel transform is given by
(REF Baddour eq.
3)
\begin_inset Formula
\[
g(r)=\frac{2}{\pi}\int_{0}^{\infty}\ud k\, k^{2}\bsht lg(k)j_{l}(k),
\]
\end_inset
so it is not unitary.
2017-08-05 09:53:58 +03:00
\end_layout
\begin_layout Standard
2017-08-07 22:08:35 +03:00
An unitary convention would look like this:
2017-08-05 09:53:58 +03:00
\begin_inset Formula
\[
2017-08-07 22:08:35 +03:00
\usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).
2017-08-05 09:53:58 +03:00
\]
\end_inset
2017-08-07 22:08:35 +03:00
Then
\begin_inset Formula $\usht l{}^{-1}=\usht l{}$
\end_inset
and the unitary, angular-momentum Fourier transform reads
\begin_inset Formula
\begin{eqnarray*}
\uaft f(\vect k) & = & \frac{4\pi}{\left(2\pi\right)^{\frac{3}{2}}}\sqrt{\frac{\pi}{2}}\sum_{l,m}\left(-i\right)^{l}\left(\usht l{f_{l,m}}\right)\left(\left|\vect k\right|\right)\ush lm\left(\theta_{\vect k},\phi_{\vect k}\right)\\
& = & \sum_{l,m}\left(-i\right)^{l}\left(\usht l{f_{l,m}}\right)\left(\left|\vect k\right|\right)\ush lm\left(\theta_{\vect k},\phi_{\vect k}\right).
\end{eqnarray*}
\end_inset
Cool.
\end_layout
\begin_layout Subsection
Two dimensions
\end_layout
\begin_layout Standard
Similarly in 2d, let the expansion of
\begin_inset Formula $f$
\end_inset
be
\begin_inset Formula
\[
f\left(\vect r\right)=\sum_{m}f_{m}\left(\left|\vect r\right|\right)e^{im\phi_{\vect r}},
\]
\end_inset
its Fourier transform is then (CHECK this, it is taken from the Wikipedia
article on Hankel transform)
\begin_inset Formula
\[
\uaft f\left(\vect k\right)=\sum_{m}i^{m}e^{im\theta_{\vect k}}\pht mf\left(\left|\vect k\right|\right)
\]
\end_inset
where the Hankel transform of order
\begin_inset Formula $m$
\end_inset
is defined as
\begin_inset Formula
\[
\pht mg\left(k\right)=\int_{0}^{\infty}\ud r\, J_{m}(kr)r
\]
\end_inset
which is already self-inverse,
\begin_inset Formula $\pht m{}^{-1}=\pht m{}$
\end_inset
2017-08-05 09:53:58 +03:00
2017-08-07 22:08:35 +03:00
(hence also unitary).
2017-08-02 19:46:51 +03:00
\end_layout
\begin_layout Section
2017-08-03 16:09:54 +03:00
(Appendix) Multidimensional Dirac comb
2017-08-02 19:46:51 +03:00
\end_layout
\begin_layout Subsection
1D
\end_layout
\begin_layout Standard
This is all from Wikipedia
\end_layout
\begin_layout Subsubsection
Definitions
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{eqnarray*}
Ш(t) & \equiv & \sum_{k=-\infty}^{\infty}\delta(t-k)\\
Ш_{T}(t) & \equiv & \sum_{k=-\infty}^{\infty}\delta(t-kT)=\frac{1}{T}Ш\left(\frac{t}{T}\right)
\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Subsubsection
Fourier series representation
\end_layout
\begin_layout Standard
\begin_inset Formula
2017-08-03 16:09:54 +03:00
\begin{equation}
Ш_{T}(t)=\sum_{n=-\infty}^{\infty}e^{2\pi int/T}\label{eq:1D Dirac comb Fourier series}
\end{equation}
2017-08-02 19:46:51 +03:00
\end_inset
\end_layout
\begin_layout Subsubsection
Fourier transform
\end_layout
\begin_layout Standard
With unitary ordinary frequency Ft., i.e.
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\uoft f(\vect{\xi})\equiv\int_{\mathbb{R}^{n}}f(\vect x)e^{-2\pi i\vect x\cdot\vect{\xi}}\ud^{n}\vect x
\]
\end_inset
we have
\begin_inset Formula
2017-08-03 16:09:54 +03:00
\begin{equation}
\uoft{Ш_{T}}(f)=\frac{1}{T}Ш_{\frac{1}{T}}(f)=\sum_{n=-\infty}^{\infty}e^{-i2\pi fnT}\label{eq:1D Dirac comb Ft ordinary freq}
\end{equation}
2017-08-02 19:46:51 +03:00
\end_inset
and with unitary angular frequency Ft., i.e.
\begin_inset Formula
\[
2017-08-05 15:09:43 +03:00
\uaft f(\vect k)\equiv\frac{1}{\left(2\pi\right)^{n/2}}\int_{\mathbb{R}^{n}}f(\vect x)e^{-i\vect x\cdot\vect k}\ud^{n}\vect x
2017-08-02 19:46:51 +03:00
\]
\end_inset
2017-08-07 16:48:37 +03:00
we have (CHECK)
2017-08-02 19:46:51 +03:00
\begin_inset Formula
\[
\uaft{Ш_{T}}(\omega)=\frac{\sqrt{2\pi}}{T}Ш_{\frac{2\pi}{T}}(\omega)=\frac{1}{\sqrt{2\pi}}\sum_{n=-\infty}^{\infty}e^{-i\omega nT}
\]
\end_inset
\end_layout
\begin_layout Subsection
Dirac comb for multidimensional lattices
\end_layout
\begin_layout Subsubsection
Definitions
\end_layout
\begin_layout Standard
Let
\begin_inset Formula $d$
\end_inset
be the dimensionality of the real vector space in question, and let
\begin_inset Formula $\basis u\equiv\left\{ \vect u_{i}\right\} _{i=1}^{d}$
\end_inset
denote a basis for some lattice in that space.
Let the corresponding lattice delta comb be
\begin_inset Formula
\[
\dc{\basis u}\left(\vect x\right)\equiv\sum_{n_{1}=-\infty}^{\infty}\ldots\sum_{n_{d}=-\infty}^{\infty}\delta\left(\vect x-\sum_{i=1}^{d}n_{i}\vect u_{i}\right).
\]
\end_inset
\end_layout
\begin_layout Standard
Furthemore, let
\begin_inset Formula $\rec{\basis u}\equiv\left\{ \rec{\vect u}_{i}\right\} _{i=1}^{d}$
\end_inset
be the reciprocal lattice basis, that is the basis satisfying
\begin_inset Formula $\vect u_{i}\cdot\rec{\vect u_{j}}=\delta_{ij}$
\end_inset
.
This slightly differs from the usual definition of a reciprocal basis,
here denoted
\begin_inset Formula $\recb{\basis u}\equiv\left\{ \recb{\vect u_{i}}\right\} _{i=1}^{d}$
\end_inset
, which satisfies
\begin_inset Formula $\vect u_{i}\cdot\recb{\vect u_{j}}=2\pi\delta_{ij}$
\end_inset
instead.
\end_layout
\begin_layout Subsubsection
Factorisation of a multidimensional lattice delta comb
\end_layout
\begin_layout Standard
By simple drawing, it can be seen that
\begin_inset Formula
\[
\dc{\basis u}(\vect x)=c_{\basis u}\prod_{i=1}^{d}\dc{}\left(\vect x\cdot\rec{\vect u_{i}}\right)
\]
\end_inset
where
\begin_inset Formula $c_{\basis u}$
\end_inset
is some numerical volume factor.
In order to determine
\begin_inset Formula $c_{\basis u}$
\end_inset
, let us consider only the
\begin_inset Quotes eld
\end_inset
zero tooth
\begin_inset Quotes erd
\end_inset
of the comb, leading to
\begin_inset Formula
\[
\delta^{d}(\vect x)=c_{\basis u}\prod_{i=1}^{d}\delta\left(\vect x\cdot\rec{\vect u_{i}}\right).
\]
\end_inset
From the scaling property of delta function,
\begin_inset Formula $\delta(ax)=\left|a\right|^{-1}\delta(x)$
\end_inset
, we get
\begin_inset Formula
\[
\delta^{d}(\vect x)=c_{\basis u}\prod_{i=1}^{d}\left\Vert \rec{\vect u_{i}}\right\Vert ^{-1}\delta\left(\vect x\cdot\frac{\rec{\vect u_{i}}}{\left\Vert \rec{\vect u_{i}}\right\Vert }\right).
\]
\end_inset
2017-08-03 16:09:54 +03:00
\end_layout
\begin_layout Standard
2017-08-07 16:48:37 +03:00
From the Osgood's book (p.
375):
2017-08-03 16:09:54 +03:00
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\dc A(\vect x)=\frac{1}{\left|\det A\right|}\dc{}^{(d)}\left(A^{-1}\vect x\right)
\]
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
2017-08-02 19:46:51 +03:00
Applying both sides to a test function that is one at the origin, we get
\begin_inset Formula $c_{\basis u}=\prod_{i=1}^{d}\left\Vert \rec{\vect u_{i}}\right\Vert $
\end_inset
2017-08-03 16:09:54 +03:00
SRSLY?, and hence
2017-08-02 19:46:51 +03:00
\begin_inset Formula
2017-08-03 16:09:54 +03:00
\begin{equation}
\dc{\basis u}(\vect x)=\prod_{i=1}^{d}\left\Vert \rec{\vect u_{i}}\right\Vert \dc{}\left(\vect x\cdot\rec{\vect u_{i}}\right).\label{eq:Dirac comb factorisation}
\end{equation}
\end_inset
\end_layout
2017-08-02 19:46:51 +03:00
\end_inset
\end_layout
\begin_layout Subsubsection
Fourier series representation
\end_layout
2017-08-03 16:09:54 +03:00
\begin_layout Standard
\begin_inset Note Note
status open
\begin_layout Plain Layout
Utilising the Fourier series for 1D Dirac comb
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:1D Dirac comb Fourier series"
\end_inset
and the factorisation
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Dirac comb factorisation"
\end_inset
, we get
\begin_inset Formula
\begin{eqnarray*}
\dc{\basis u}(\vect x) & = & \prod_{j=1}^{d}\left\Vert \rec{\vect u_{j}}\right\Vert \sum_{n_{j}=-\infty}^{\infty}e^{2\pi in_{i}\vect x\cdot\rec{\vect u_{i}}}\\
& = & \left(\prod_{j=1}^{d}\left\Vert \rec{\vect u_{j}}\right\Vert \right)\sum_{\vect n\in\mathbb{Z}^{d}}e^{2\pi i\vect x\cdot\sum_{k=1}^{d}n_{k}\rec{\vect u_{k}}}.
\end{eqnarray*}
\end_inset
\end_layout
\end_inset
\end_layout
2017-08-02 19:46:51 +03:00
\begin_layout Subsubsection
2017-08-07 16:48:37 +03:00
Fourier transform (OK)
2017-08-02 19:46:51 +03:00
\end_layout
2017-08-03 16:09:54 +03:00
\begin_layout Standard
2017-08-07 16:48:37 +03:00
From the Osgood's book https://see.stanford.edu/materials/lsoftaee261/chap8.pdf,
p.
2017-08-05 15:09:43 +03:00
379
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
2017-08-07 16:48:37 +03:00
\uoft{\dc{\basis u}}\left(\vect{\xi}\right)=\left|\det\rec{\basis u}\right|\dc{\rec{\basis u}}^{(d)}\left(\vect{\xi}\right).
2017-08-05 15:09:43 +03:00
\]
\end_inset
And consequently, for unitary/angular frequency it is
\end_layout
\begin_layout Standard
2017-08-07 16:48:37 +03:00
\begin_inset Formula
\begin{eqnarray}
\uaft{\dc{\basis u}}\left(\vect k\right) & = & \frac{1}{\left(2\pi\right)^{\frac{d}{2}}}\uoft{\dc{\basis u}}\left(\frac{\vect k}{2\pi}\right)\nonumber \\
& = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\dc{\rec{\basis u}}^{(d)}\left(\frac{\vect k}{2\pi}\right)\nonumber \\
& = & \left(2\pi\right)^{\frac{d}{2}}\left|\det\rec{\basis u}\right|\dc{\recb{\basis u}}\left(\vect k\right)\nonumber \\
& = & \frac{\left|\det\recb{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\dc{\recb{\basis u}}\left(\vect k\right).\label{eq:Dirac comb uaFt}
\end{eqnarray}
\end_inset
2017-08-03 16:09:54 +03:00
\end_layout
\begin_layout Standard
2017-08-07 16:48:37 +03:00
\begin_inset Note Note
status open
\begin_layout Plain Layout
On the third line, we used the stretch theorem, getting
2017-08-03 16:09:54 +03:00
\begin_inset Formula
\[
2017-08-07 16:48:37 +03:00
\dc{\recb{\basis u}}\left(\vect k\right)=\dc{2\pi\rec{\basis u}}\left(\vect k\right)=\left(2\pi\right)^{-d}\dc{\rec{\basis u}}\left(\frac{\vect k}{2\pi}\right)
2017-08-03 16:09:54 +03:00
\]
\end_inset
2017-08-07 10:13:36 +03:00
2017-08-07 16:48:37 +03:00
\end_layout
2017-08-07 10:13:36 +03:00
\end_inset
2017-08-07 16:48:37 +03:00
\end_layout
\begin_layout Subsubsection
Convolution
\end_layout
\begin_layout Standard
2017-08-07 10:13:36 +03:00
\begin_inset Formula
\[
2017-08-07 16:48:37 +03:00
\left(f\ast\dc{\basis u}\right)(\vect x)=\sum_{\vect t\in\basis u\ints^{d}}f(\vect x-\vect t)
2017-08-07 10:13:36 +03:00
\]
\end_inset
2017-08-03 16:09:54 +03:00
\end_layout
\begin_layout Standard
\begin_inset Note Note
status open
\begin_layout Plain Layout
So, from the stretch theorem
\begin_inset Formula $\uoft{(f(A\vect x))}=\frac{1}{\left|\det A\right|}\uoft{f\left(A^{-T}\vect{\xi}\right)}=\left|\det A^{-T}\right|\uoft{f\left(A^{-T}\vect{\xi}\right)}$
\end_inset
\end_layout
\begin_layout Plain Layout
From
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Dirac comb factorisation"
\end_inset
and
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:1D Dirac comb Ft ordinary freq"
\end_inset
\begin_inset Formula
\[
\uoft{\dc{\basis u}}(\vect{\xi})=\prod_{i=1}^{d}\left\Vert \rec{\vect u_{i}}\right\Vert \dc{}\left(\vect x\cdot\rec{\vect u_{i}}\right).
\]
\end_inset
\end_layout
\end_inset
\end_layout
2017-08-02 19:46:51 +03:00
\end_body
\end_document