2019-07-28 15:25:04 +03:00
#LyX 2.4 created this file. For more info see https://www.lyx.org/
2019-08-04 18:24:17 +03:00
\lyxformat 584
2019-06-30 21:30:54 +03:00
\begin_document
\begin_header
2019-07-22 07:52:33 +03:00
\save_transient_properties true
\origin unavailable
2019-06-30 21:30:54 +03:00
\textclass article
\use_default_options true
\maintain_unincluded_children false
2019-07-28 15:25:04 +03:00
\language english
2019-06-30 21:30:54 +03:00
\language_package default
2019-07-28 15:25:04 +03:00
\inputencoding utf8
\fontencoding auto
2019-07-22 07:52:33 +03:00
\font_roman "default" "TeX Gyre Pagella"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
2019-06-30 21:30:54 +03:00
\font_default_family default
2019-07-28 15:25:04 +03:00
\use_non_tex_fonts false
2019-06-30 21:30:54 +03:00
\font_sc false
2019-07-28 15:25:04 +03:00
\font_roman_osf true
\font_sans_osf false
\font_typewriter_osf false
2019-07-22 07:52:33 +03:00
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
2019-06-30 21:30:54 +03:00
\graphics default
2019-07-28 15:25:04 +03:00
\default_output_format default
2019-06-30 21:30:54 +03:00
\output_sync 0
\bibtex_command default
\index_command default
2019-07-28 15:25:04 +03:00
\float_placement class
\float_alignment class
2019-06-30 21:30:54 +03:00
\paperfontsize default
\spacing single
\use_hyperref true
\pdf_author "Marek Nečada"
\pdf_bookmarks true
\pdf_bookmarksnumbered false
\pdf_bookmarksopen false
\pdf_bookmarksopenlevel 1
\pdf_breaklinks false
\pdf_pdfborder false
\pdf_colorlinks false
\pdf_backref false
\pdf_pdfusetitle true
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
2019-07-22 07:52:33 +03:00
\use_minted 0
2019-07-28 15:25:04 +03:00
\use_lineno 0
2019-06-30 21:30:54 +03:00
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
2019-07-22 07:52:33 +03:00
\is_math_indent 0
\math_numbering_side default
2019-07-28 15:25:04 +03:00
\quotes_style english
2019-07-22 07:52:33 +03:00
\dynamic_quotes 0
2019-06-30 21:30:54 +03:00
\papercolumns 1
\papersides 1
\paperpagestyle default
2019-07-28 15:25:04 +03:00
\tablestyle default
2019-06-30 21:30:54 +03:00
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Section
Infinite periodic systems
2019-08-04 18:24:17 +03:00
\begin_inset CommandInset label
LatexCommand label
name "sec:Infinite"
\end_inset
2019-07-29 22:09:11 +03:00
\begin_inset FormulaMacro
2019-07-30 08:48:57 +03:00
\newcommand{\dlv}{\vect a}
2019-07-29 22:09:11 +03:00
\end_inset
\begin_inset FormulaMacro
\newcommand{\rlv}{\vect b}
\end_inset
2019-06-30 21:30:54 +03:00
\end_layout
2019-07-29 16:48:00 +03:00
\begin_layout Standard
Although large finite systems are where MSTMM excels the most, there are
several reasons that makes its extension to infinite lattices (where periodic
boundary conditions might be applied) desirable as well.
Other methods might be already fast enough, but MSTMM will be faster in
most cases in which there is enough spacing between the neighboring particles.
MSTMM works well with any space group symmetry the system might have (as
opposed to, for example, FDTD with cubic mesh applied to a honeycomb lattice),
which makes e.g.
application of group theory in mode analysis quite easy.
\begin_inset Note Note
status open
\begin_layout Plain Layout
Topology anoyne?
\end_layout
\end_inset
And finally, having a method that handles well both infinite and large
finite system gives a possibility to study finite-size effects in periodic
scatterer arrays.
\end_layout
2019-07-29 22:09:11 +03:00
\begin_layout Subsection
Notation
\end_layout
2019-07-30 08:48:57 +03:00
\begin_layout Standard
2019-07-30 10:26:30 +03:00
TODO Fourier transforms, Delta comb, lattice bases, reciprocal lattices
etc.
2019-07-30 08:48:57 +03:00
\end_layout
2019-07-01 14:50:46 +03:00
\begin_layout Subsection
Formulation of the problem
\end_layout
\begin_layout Standard
2019-07-29 22:09:11 +03:00
Let us have a linear system of compact EM scatterers on a homogeneous background
as in Section
\begin_inset CommandInset ref
LatexCommand eqref
reference "subsec:Multiple-scattering"
plural "false"
caps "false"
noprefix "false"
\end_inset
2019-07-30 08:48:57 +03:00
, but this time, the system shall be periodic: let there be a
2019-07-29 22:09:11 +03:00
\begin_inset Formula $d$
\end_inset
-dimensional (
\begin_inset Formula $d$
\end_inset
can be 1, 2 or 3) lattice embedded into the three-dimensional real space,
2019-07-30 08:48:57 +03:00
with lattice vectors
\begin_inset Formula $\left\{ \dlv_{i}\right\} _{i=1}^{d}$
\end_inset
, and let the lattice points be labeled with an
2019-07-29 22:09:11 +03:00
\begin_inset Formula $d$
\end_inset
2019-07-30 08:48:57 +03:00
-dimensional integar multiindex
\begin_inset Formula $\vect n\in\ints^{d}$
\end_inset
2019-07-01 14:50:46 +03:00
2019-07-30 08:48:57 +03:00
, so the lattice points have cartesian coordinates
\begin_inset Formula $\vect R_{\vect n}=\sum_{i=1}^{d}n_{i}\vect a_{i}$
2019-07-01 14:50:46 +03:00
\end_inset
2019-07-30 08:48:57 +03:00
.
There can be several scatterers per unit cell with indices
\begin_inset Formula $\alpha$
2019-07-01 14:50:46 +03:00
\end_inset
2019-07-30 08:48:57 +03:00
from set
\begin_inset Formula $\mathcal{P}_{1}$
2019-07-01 14:50:46 +03:00
\end_inset
2019-07-30 08:48:57 +03:00
and (relative) positions inside the unit cell
\begin_inset Formula $\vect r_{\alpha}$
2019-07-01 14:50:46 +03:00
\end_inset
2019-07-30 08:48:57 +03:00
; any particle of the periodic system can thus be labeled by a multiindex
from
\begin_inset Formula $\mathcal{P}=\ints^{d}\times\mathcal{P}_{1}$
2019-07-01 14:50:46 +03:00
\end_inset
2019-07-30 08:48:57 +03:00
.
The scatterers are located at positions
\begin_inset Formula $\vect r_{\vect n,\alpha}=\vect R_{\vect n}+\vect r_{\alpha}$
2019-07-01 14:50:46 +03:00
\end_inset
2019-07-30 08:48:57 +03:00
and their
\begin_inset Formula $T$
\end_inset
2019-07-01 14:50:46 +03:00
2019-07-30 08:48:57 +03:00
-matrices are periodic,
\begin_inset Formula $T_{\vect n,\alpha}=T_{\alpha}$
\end_inset
.
In such system, the multiple-scattering problem
\begin_inset CommandInset ref
2019-07-31 17:52:58 +03:00
LatexCommand eqref
2019-07-30 08:48:57 +03:00
reference "eq:Multiple-scattering problem"
plural "false"
caps "false"
noprefix "false"
\end_inset
can be rewritten as
2019-07-01 14:50:46 +03:00
\end_layout
\begin_layout Standard
\begin_inset Formula
2019-07-30 08:48:57 +03:00
\begin{equation}
\outcoeffp{\vect n,\alpha}-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect n,\alpha\right)\right\} }\tropsp{\vect n,\alpha}{\vect m,\beta}\outcoeffp{\vect m,\beta}=T_{\alpha}\rcoeffincp{\vect n,\alpha}.\quad\left(\vect n,\alpha\right)\in\mathcal{P}\label{eq:Multiple-scattering problem periodic}
\end{equation}
2019-07-01 14:50:46 +03:00
\end_inset
\end_layout
\begin_layout Standard
2019-07-30 08:48:57 +03:00
Due to periodicity, we can also write
\begin_inset Formula $\tropsp{\vect n,\alpha}{\vect m,\beta}=\tropsp{\alpha}{\beta}\left(\vect R_{\vect m}-\vect R_{\vect n}\right)=\tropsp{\alpha}{\beta}\left(\vect R_{\vect m-\vect n}\right)=\tropsp{\vect 0,\alpha}{\vect m-\vect n,\beta}$
2019-07-01 14:50:46 +03:00
\end_inset
2019-07-30 08:48:57 +03:00
.
Assuming quasi-periodic right-hand side with quasi-momentum
\begin_inset Formula $\vect k$
2019-07-01 14:50:46 +03:00
\end_inset
2019-07-30 08:48:57 +03:00
,
\begin_inset Formula $\rcoeffincp{\vect n,\alpha}=\rcoeffincp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}}$
2019-07-01 14:50:46 +03:00
\end_inset
2019-07-30 08:48:57 +03:00
, the solutions of
\begin_inset CommandInset ref
2019-07-31 17:52:58 +03:00
LatexCommand eqref
2019-07-30 08:48:57 +03:00
reference "eq:Multiple-scattering problem periodic"
plural "false"
caps "false"
noprefix "false"
\end_inset
2019-07-01 14:50:46 +03:00
2019-07-30 08:48:57 +03:00
will be also quasi-periodic according to Bloch theorem,
\begin_inset Formula $\outcoeffp{\vect n,\alpha}=\outcoeffp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}}$
2019-07-01 14:50:46 +03:00
\end_inset
2019-07-30 08:48:57 +03:00
, and eq.
\begin_inset CommandInset ref
2019-07-31 17:52:58 +03:00
LatexCommand eqref
2019-07-30 08:48:57 +03:00
reference "eq:Multiple-scattering problem periodic"
plural "false"
caps "false"
noprefix "false"
2019-07-01 14:50:46 +03:00
\end_inset
2019-07-30 08:48:57 +03:00
can be rewritten as follows
2019-07-01 14:50:46 +03:00
\begin_inset Formula
2019-07-30 10:26:30 +03:00
\begin{align}
\outcoeffp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}}-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect n,\alpha\right)\right\} }\tropsp{\vect n,\alpha}{\vect m,\beta}\outcoeffp{\vect 0,\beta}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect m}} & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}},\nonumber \\
\outcoeffp{\vect 0,\alpha}\left(\vect k\right)-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect n,\alpha\right)\right\} }\tropsp{\vect 0,\alpha}{\vect m-\vect n,\beta}\outcoeffp{\vect 0,\beta}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect m-\vect n}} & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right),\nonumber \\
\outcoeffp{\vect 0,\alpha}\left(\vect k\right)-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect 0,\alpha\right)\right\} }\tropsp{\vect 0,\alpha}{\vect m,\beta}\outcoeffp{\vect 0,\beta}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect m}} & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right),\nonumber \\
\outcoeffp{\vect 0,\alpha}\left(\vect k\right)-T_{\alpha}\sum_{\beta\in\mathcal{P}}W_{\alpha\beta}\left(\vect k\right)\outcoeffp{\vect 0,\beta}\left(\vect k\right) & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right),\label{eq:Multiple-scattering problem unit cell}
\end{align}
2019-07-01 14:50:46 +03:00
\end_inset
2019-07-30 08:48:57 +03:00
so we reduced the initial scattering problem to one involving only the field
expansion coefficients from a single unit cell, but we need to compute
the
2019-07-01 14:50:46 +03:00
\begin_inset Quotes eld
\end_inset
lattice Fourier transform
\begin_inset Quotes erd
\end_inset
of the translation operator,
\begin_inset Formula
\begin{equation}
2019-07-30 10:26:30 +03:00
W_{\alpha\beta}(\vect k)\equiv\sum_{\vect m\in\ints^{d}}\left(1-\delta_{\alpha\beta}\right)\tropsp{\vect 0,\alpha}{\vect m,\beta}e^{i\vect k\cdot\vect R_{\vect m}},\label{eq:W definition}
2019-07-01 14:50:46 +03:00
\end{equation}
\end_inset
2019-07-30 10:26:30 +03:00
evaluation of which is possible but quite non-trivial due to the infinite
lattice sum, so we explain it separately in Sect.
\begin_inset CommandInset ref
2019-07-31 17:52:58 +03:00
LatexCommand eqref
2019-07-30 10:26:30 +03:00
reference "subsec:W operator evaluation"
plural "false"
caps "false"
noprefix "false"
\end_inset
2019-07-01 14:50:46 +03:00
2019-07-30 10:26:30 +03:00
.
2019-07-01 14:50:46 +03:00
\end_layout
2019-07-31 06:40:25 +03:00
\begin_layout Standard
As in the case of a finite system, eq.
can be written in a shorter block-matrix form,
\begin_inset Formula
2019-07-31 10:10:45 +03:00
\begin{equation}
2019-08-04 18:24:17 +03:00
\left(I-TW\right)\outcoeffp{\vect 0}\left(\vect k\right)=T\rcoeffincp{\vect 0}\left(\vect k\right)\label{eq:Multiple-scattering problem unit cell block form}
2019-07-31 10:10:45 +03:00
\end{equation}
2019-07-31 06:40:25 +03:00
\end_inset
Eq.
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Multiple-scattering problem unit cell"
plural "false"
caps "false"
noprefix "false"
\end_inset
can be used to calculate electromagnetic response of the structure to external
quasiperiodic driving field – most notably a plane wave.
2019-07-31 10:10:45 +03:00
However, the non-trivial solutions of the equation with right hand side
(i.e.
the external driving) set to zero,
\begin_inset Formula
\begin{equation}
2019-08-04 18:24:17 +03:00
\left(I-TW\right)\outcoeffp{\vect 0}\left(\vect k\right)=0,\label{eq:lattice mode equation}
2019-07-31 10:10:45 +03:00
\end{equation}
\end_inset
describes the
\emph on
lattice modes.
\emph default
Non-trivial solutions to
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:lattice mode equation"
plural "false"
caps "false"
noprefix "false"
\end_inset
exist if the matrix on the left-hand side
2019-08-04 18:24:17 +03:00
\begin_inset Formula $M\left(\omega,\vect k\right)=\left(I-T\left(\omega\right)W\left(\omega,\vect k\right)\right)$
2019-07-31 10:10:45 +03:00
\end_inset
is singular – this condition gives the
\emph on
dispersion relation
\emph default
for the periodic structure.
Note that in realistic (lossy) systems, at least one of the pair
\begin_inset Formula $\omega,\vect k$
\end_inset
will acquire complex values.
2019-07-31 13:02:10 +03:00
The solution
\begin_inset Formula $\outcoeffp{\vect 0}\left(\vect k\right)$
\end_inset
is then obtained as the right
\begin_inset Note Note
status open
\begin_layout Plain Layout
CHECK!
\end_layout
\end_inset
singular vector of
\begin_inset Formula $M\left(\omega,\vect k\right)$
\end_inset
corresponding to the zero singular value.
2019-07-31 10:10:45 +03:00
\end_layout
\begin_layout Subsection
Numerical solution
\end_layout
\begin_layout Standard
In practice, equation
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Multiple-scattering problem unit cell block form"
plural "false"
caps "false"
noprefix "false"
\end_inset
is solved in the same way as eq.
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Multiple-scattering problem block form"
plural "false"
caps "false"
noprefix "false"
\end_inset
in the multipole degree truncated form.
\end_layout
\begin_layout Standard
The lattice mode problem
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:lattice mode equation"
plural "false"
caps "false"
noprefix "false"
\end_inset
is (after multipole degree truncation) solved by finding
\begin_inset Formula $\omega,\vect k$
\end_inset
for which the matrix
\begin_inset Formula $M\left(\omega,\vect k\right)$
\end_inset
has a zero singular value.
A naïve approach to do that is to sample a volume with a grid in the
\begin_inset Formula $\left(\omega,\vect k\right)$
\end_inset
space, performing a singular value decomposition of
\begin_inset Formula $M\left(\omega,\vect k\right)$
\end_inset
at each point and finding where the lowest singular value of
\begin_inset Formula $M\left(\omega,\vect k\right)$
\end_inset
is close enough to zero.
However, this approach is quite expensive, for
\begin_inset Formula $W\left(\omega,\vect k\right)$
\end_inset
has to be evaluated for each
\begin_inset Formula $\omega,\vect k$
\end_inset
pair separately (unlike the original finite case
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Multiple-scattering problem block form"
plural "false"
caps "false"
noprefix "false"
\end_inset
translation operator
\begin_inset Formula $\trops$
\end_inset
, which, for a given geometry, depends only on frequency).
Therefore, a much more efficient approach to determine the photonic bands
is to sample the
\begin_inset Formula $\vect k$
\end_inset
-space (a whole Brillouin zone or its part) and for each fixed
\begin_inset Formula $\vect k$
\end_inset
to find a corresponding frequency
\begin_inset Formula $\omega$
\end_inset
with zero singular value of
\begin_inset Formula $M\left(\omega,\vect k\right)$
\end_inset
using a minimisation algorithm (two- or one-dimensional, depending on whether
one needs the exact complex-valued
\begin_inset Formula $\omega$
\end_inset
or whether the its real-valued approximation is satisfactory).
Typically, a good initial guess for
\begin_inset Formula $\omega\left(\vect k\right)$
\end_inset
is obtained from the empty lattice approximation,
\begin_inset Formula $\left|\vect k\right|=\sqrt{\epsilon\mu}\omega/c_{0}$
\end_inset
(modulo lattice points; TODO write this a clean way).
A somehow challenging step is to distinguish the different bands that can
all be very close to the empty lattice approximation, especially if the
particles in the systems are small.
In high-symmetry points of the Brilloin zone, this can be solved by factorising
\begin_inset Formula $M\left(\omega,\vect k\right)$
\end_inset
into irreducible representations
\begin_inset Formula $\Gamma_{i}$
\end_inset
and performing the minimisation in each irrep separately, cf.
Section
\begin_inset CommandInset ref
LatexCommand ref
reference "sec:Symmetries"
plural "false"
caps "false"
noprefix "false"
\end_inset
, and using the different
\begin_inset Formula $\omega_{\Gamma_{i}}\left(\vect k\right)$
\end_inset
to obtain the initial guesses for the nearby points
\begin_inset Formula $\vect k+\delta\vect k$
\end_inset
.
2019-07-31 06:40:25 +03:00
\end_layout
2019-07-01 14:50:46 +03:00
\begin_layout Subsection
Computing the Fourier sum of the translation operator
2019-07-30 10:26:30 +03:00
\begin_inset CommandInset label
LatexCommand label
name "subsec:W operator evaluation"
\end_inset
2019-07-01 14:50:46 +03:00
\end_layout
\begin_layout Standard
The problem evaluating
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:W definition"
\end_inset
is the asymptotic behaviour of the translation operator,
2019-07-30 08:48:57 +03:00
\begin_inset Formula $\tropsp{\vect 0,\alpha}{\vect m,\beta}\sim\left|\vect R_{\vect b}\right|^{-1}e^{ik_{0}\left|\vect R_{\vect b}\right|}$
2019-07-01 14:50:46 +03:00
\end_inset
2019-07-30 08:48:57 +03:00
that does not in the strict sense converge for any
2019-07-01 14:50:46 +03:00
\begin_inset Formula $d>1$
\end_inset
-dimensional lattice.
2019-07-30 08:48:57 +03:00
\begin_inset Note Note
status open
\begin_layout Plain Layout
2019-07-01 14:50:46 +03:00
\begin_inset Foot
status open
\begin_layout Plain Layout
Note that
\begin_inset Formula $d$
\end_inset
here is dimensionality of the lattice, not the space it lies in, which
I for certain reasons assume to be three.
(TODO few notes on integration and reciprocal lattices in some appendix)
\end_layout
\end_inset
2019-07-30 08:48:57 +03:00
\end_layout
\end_inset
In electrostatics, this problem can be solved with Ewald summation [TODO
REF].
2019-07-01 14:50:46 +03:00
Its basic idea is that if what asymptoticaly decays poorly in the direct
space, will perhaps decay fast in the Fourier space.
2019-07-30 08:48:57 +03:00
We use the same idea here, but the technical details are more complicated
than in electrostatics.
2019-07-01 14:50:46 +03:00
\end_layout
\begin_layout Standard
Let us re-express the sum in
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:W definition"
\end_inset
in terms of integral with a delta comb
2019-07-28 15:25:04 +03:00
\begin_inset FormulaMacro
2019-07-29 22:09:11 +03:00
\renewcommand{\basis}[1]{\mathfrak{#1}}
2019-07-28 15:25:04 +03:00
\end_inset
2019-07-01 14:50:46 +03:00
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
W_{\alpha\beta}(\vect k)=\int\ud^{d}\vect r\dc{\basis u}(\vect r)S(\vect r_{\alpha}\leftarrow\vect r+\vect r_{\beta})e^{i\vect k\cdot\vect r}.\label{eq:W integral}
\end{equation}
\end_inset
The translation operator
\begin_inset Formula $S$
\end_inset
is now a function defined in the whole 3d space;
\begin_inset Formula $\vect r_{\alpha},\vect r_{\beta}$
\end_inset
are the displacements of scatterers
\begin_inset Formula $\alpha$
\end_inset
and
\begin_inset Formula $\beta$
\end_inset
in a unit cell.
The arrow notation
\begin_inset Formula $S(\vect r_{\alpha}\leftarrow\vect r+\vect r_{\beta})$
\end_inset
means
\begin_inset Quotes eld
\end_inset
translation operator for spherical waves originating in
\begin_inset Formula $\vect r+\vect r_{\beta}$
\end_inset
evaluated in
\begin_inset Formula $\vect r_{\alpha}$
\end_inset
\begin_inset Quotes erd
\end_inset
and obviously
\begin_inset Formula $S$
\end_inset
is in fact a function of a single 3d argument,
2019-07-29 22:09:11 +03:00
\begin_inset Formula $S(\vect r_{\alpha}\leftarrow\vect r+\vect r_{\beta})=S(\vect 0\leftarrow\vect r+\vect r_{\beta}-\vect r_{\alpha})=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha})$
2019-07-01 14:50:46 +03:00
\end_inset
.
Expression
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:W integral"
\end_inset
can be rewritten as
\begin_inset Formula
\[
2019-07-29 22:09:11 +03:00
W_{\alpha\beta}(\vect k)=\left(2\pi\right)^{\frac{d}{2}}\uaft{(\dc{\basis u}S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0))\left(\vect k\right)}
2019-07-01 14:50:46 +03:00
\]
\end_inset
where changed the sign of
\begin_inset Formula $\vect r/\vect{\bullet}$
\end_inset
has been swapped under integration, utilising evenness of
\begin_inset Formula $\dc{\basis u}$
\end_inset
.
Fourier transform of product is convolution of Fourier transforms, so (using
formula
2019-08-04 18:24:17 +03:00
\begin_inset Note Note
status open
\begin_layout Plain Layout
2019-07-01 14:50:46 +03:00
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Dirac comb uaFt"
\end_inset
2019-08-04 18:24:17 +03:00
\end_layout
\end_inset
(REF?) for the Fourier transform of Dirac comb)
2019-07-01 14:50:46 +03:00
\begin_inset Formula
\begin{eqnarray}
2019-07-29 22:09:11 +03:00
W_{\alpha\beta}(\vect k) & = & \left(\left(\uaft{\dc{\basis u}}\right)\ast\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\right)(\vect k)\nonumber \\
& = & \frac{\left|\det\recb{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\left(\dc{\recb{\basis u}}^{(d)}\ast\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\right)\left(\vect k\right)\nonumber \\
& = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\left(\vect k-\vect K\right)\label{eq:W sum in reciprocal space}\\
& = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}e^{i\left(\vect k-\vect K\right)\cdot\left(-\vect r_{\beta}+\vect r_{\alpha}\right)}\left(\uaft{S(\vect{\bullet}\leftarrow\vect 0)}\right)\left(\vect k-\vect K\right)\nonumber
2019-07-01 14:50:46 +03:00
\end{eqnarray}
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
Factor
\begin_inset Formula $\left(2\pi\right)^{\frac{d}{2}}$
\end_inset
cancels out with the
\begin_inset Formula $\left(2\pi\right)^{-\frac{d}{2}}$
\end_inset
factor appearing in the convolution/product formula in the unitary angular
momentum convention.
\end_layout
\end_inset
As such, this is not extremely helpful because the the
\emph on
whole
\emph default
translation operator
\begin_inset Formula $S$
\end_inset
has singularities in origin, hence its Fourier transform
\begin_inset Formula $\uaft S$
\end_inset
will decay poorly.
\end_layout
\begin_layout Standard
However, Fourier transform is linear, so we can in principle separate
\begin_inset Formula $S$
\end_inset
in two parts,
\begin_inset Formula $S=S^{\textup{L}}+S^{\textup{S}}$
\end_inset
.
\begin_inset Formula $S^{\textup{S}}$
\end_inset
is a short-range part that decays sufficiently fast with distance so that
its direct-space lattice sum converges well;
\begin_inset Formula $S^{\textup{S}}$
\end_inset
must as well contain all the singularities of
\begin_inset Formula $S$
\end_inset
in the origin.
The other part,
\begin_inset Formula $S^{\textup{L}}$
\end_inset
, will retain all the slowly decaying terms of
\begin_inset Formula $S$
\end_inset
but it also has to be smooth enough in the origin, so that its Fourier
transform
\begin_inset Formula $\uaft{S^{\textup{L}}}$
\end_inset
decays fast enough.
(The same idea lies behind the Ewald summation in electrostatics.) Using
the linearity of Fourier transform and formulae
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:W definition"
\end_inset
2019-07-30 08:48:57 +03:00
and
2019-07-01 14:50:46 +03:00
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:W sum in reciprocal space"
\end_inset
, the operator
\begin_inset Formula $W_{\alpha\beta}$
\end_inset
can then be re-expressed as
\begin_inset Formula
\begin{eqnarray}
W_{\alpha\beta}\left(\vect k\right) & = & W_{\alpha\beta}^{\textup{S}}\left(\vect k\right)+W_{\alpha\beta}^{\textup{L}}\left(\vect k\right)\nonumber \\
2019-07-31 10:10:45 +03:00
W_{\alpha\beta}^{\textup{S}}\left(\vect k\right) & = & \sum_{\vect R\in\basis u\ints^{d}}S^{\textup{S}}(\vect 0\leftarrow\vect R+\vect r_{\beta}-\vect r_{\alpha})e^{i\vect k\cdot\vect R}\label{eq:W Short definition}\\
W_{\alpha\beta}^{\textup{L}}\left(\vect k\right) & = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S^{\textup{L}}(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\left(\vect k-\vect K\right)\label{eq:W Long definition}
2019-07-01 14:50:46 +03:00
\end{eqnarray}
\end_inset
2019-07-30 10:26:30 +03:00
where both sums expected to converge nicely.
We note that the elements of the translation operators
\begin_inset Formula $\tropr,\trops$
\end_inset
in
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:translation operator"
plural "false"
caps "false"
noprefix "false"
\end_inset
can be rewritten as linear combinations of expressions
\begin_inset Formula $\ush{\nu}{\mu}\left(\uvec d\right)j_{n}\left(d\right),\ush{\nu}{\mu}\left(\uvec d\right)h_{n}^{(1)}\left(d\right)$
\end_inset
(TODO WRITE THEM EXPLICITLY IN THIS FORM), respectively, hence if we are
able evaluate the lattice sums sums
\begin_inset Note Note
status open
\begin_layout Plain Layout
CHECK THE FOLLOWING EXPRESSION FOR CORRECT FUNCTION ARGUMENTS
\end_layout
\end_inset
\begin_inset Formula
\begin{equation}
2019-07-31 10:10:45 +03:00
\sigma_{\nu}^{\mu}\left(\vect k\right)=\sum_{\vect n\in\ints^{d}\backslash\left\{ \vect 0\right\} }e^{i\vect{\vect k}\cdot\vect R_{\vect n}}\ush{\nu}{\mu}\left(\uvec{R_{n}}\right)h_{n}^{(1)}\left(R_{n}\right),\label{eq:sigma lattice sums}
2019-07-30 10:26:30 +03:00
\end{equation}
\end_inset
then by linearity, we can get the
\begin_inset Formula $W_{\alpha\beta}\left(\vect k\right)$
\end_inset
operator as well.
\end_layout
\begin_layout Standard
TODO ADD MOROZ AND OTHER REFS HERE.
\begin_inset CommandInset citation
LatexCommand cite
key "linton_one-_2009"
literal "true"
\end_inset
offers an exponentially convergent Ewald-type summation method for
\begin_inset Formula $\sigma_{\nu}^{\mu}\left(\vect k\right)=\sigma_{\nu}^{\mu(\mathrm{S})}\left(\vect k\right)+\sigma_{\nu}^{\mu(\mathrm{L})}\left(\vect k\right)$
\end_inset
.
Here we rewrite them in a form independent on the convention used for spherical
harmonics (as long as they are complex
\begin_inset Note Note
status open
\begin_layout Plain Layout
lepší formulace
\end_layout
\end_inset
).
The short-range part reads (UNIFY INDEX NOTATION)
\begin_inset Formula
\begin{multline}
\sigma_{n}^{m(\mathrm{S})}\left(\vect{\beta}\right)=-\frac{2^{n+1}i}{k^{n+1}\sqrt{\pi}}\sum_{\vect R\in\Lambda}^{'}\left|\vect R\right|^{n}e^{i\vect{\beta}\cdot\vect R}Y_{n}^{m}\left(\vect R\right)\int_{\eta}^{\infty}e^{-\left|\vect R\right|^{2}\xi^{2}}e^{-k/4\xi^{2}}\xi^{2n}\ud\xi\\
+\frac{\delta_{n0}\delta_{m0}}{\sqrt{4\pi}}\Gamma\left(-\frac{1}{2},-\frac{k}{4\eta^{2}}\right)Y_{n}^{m},\label{eq:Ewald in 3D short-range part}
\end{multline}
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
NEPATŘÍ TAM NĚJAKÁ DELTA FUNKCE K PŮVODNÍMU
\begin_inset Formula $\sigma_{n}^{m(0)}$
\end_inset
?
\end_layout
\end_inset
and the long-range part (FIXME, this is the 2D version; include the 1D and
3D lattice expressions as well)
\begin_inset Formula
\begin{multline}
\sigma_{n}^{m(\mathrm{L})}\left(\vect{\beta}\right)=-\frac{i^{n+1}}{k^{2}\mathscr{A}}\sqrt{\pi}2\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!\times\\
\times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}Y_{n}^{m}\left(\frac{\pi}{2},\phi_{\vect{\beta}_{pq}}\right)\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/k\right)^{n-2j}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\gamma_{pq}\right)^{2j-1}\label{eq:Ewald in 3D long-range part}
\end{multline}
\end_inset
where
\begin_inset Formula $\xi$
\end_inset
is TODO,
\begin_inset Formula $\beta_{pq}$
\end_inset
is TODO,
\begin_inset Formula $\Gamma_{j,pq}$
\end_inset
is TODO and
\begin_inset Formula $\eta$
\end_inset
is a real parameter that determines the pace of convergence of both parts.
The larger
\begin_inset Formula $\eta$
\end_inset
is, the faster
\begin_inset Formula $\sigma_{n}^{m(\mathrm{S})}\left(\vect{\beta}\right)$
\end_inset
converges but the slower
\begin_inset Formula $\sigma_{n}^{m(\mathrm{L})}\left(\vect{\beta}\right)$
\end_inset
converges.
Therefore (based on the lattice geometry) it has to be adjusted in a way
that a reasonable amount of terms needs to be evaluated numerically from
both
\begin_inset Formula $\sigma_{n}^{m(\mathrm{S})}\left(\vect{\beta}\right)$
\end_inset
and
\begin_inset Formula $\sigma_{n}^{m(\mathrm{L})}\left(\vect{\beta}\right)$
\end_inset
.
Generally, a good choice for
\begin_inset Formula $\eta$
\end_inset
is TODO; in order to achieve accuracy TODO, one has to evaluate the terms
on TODO lattice points.
(I HAVE SOME DERIVATIONS OF THE ESTIMATES IN MY NOTES; SHOULD I INCLUDE
THEM?)
\end_layout
\begin_layout Standard
In practice, the integrals in
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Ewald in 3D short-range part"
plural "false"
caps "false"
noprefix "false"
\end_inset
can be easily evaluated by numerical quadrature and the incomplete
\begin_inset Formula $\Gamma$
\end_inset
-functions using the series TODO and TODO from DLMF.
2019-07-01 14:50:46 +03:00
\end_layout
2019-06-30 21:30:54 +03:00
\end_body
\end_document