qpms/qpms/translations.c

1957 lines
74 KiB
C
Raw Normal View History

#include <math.h>
#include "qpms_types.h"
#include "qpms_specfunc.h"
#include "gaunt.h"
#include "translations.h"
#include "indexing.h" // TODO replace size_t and int with own index types here
#include <stdbool.h>
#include <gsl/gsl_sf_legendre.h>
#include <gsl/gsl_sf_bessel.h>
#include "tiny_inlines.h"
#include "assert_cython_workaround.h"
#include "kahansum.h"
#include <stdlib.h> //abort()
#include <gsl/gsl_sf_coupling.h>
#include "qpms_error.h"
#include "normalisation.h"
/*
* Define macros with additional factors that "should not be there" according
* to the "original" formulae but are needed to work with my vswfs.
* (actually, I don't know whether the error is in using "wrong" implementation
* of vswfs, "wrong" implementation of Xu's translation coefficient formulae,
* error/inconsintency in Xu's paper or something else)
* Anyway, the zeroes give the correct _numerical_ values according to Xu's
* paper tables (without Xu's typos, of course), while
* the predefined macros give the correct translations of the VSWFs for the
* QPMS_NORMALIZATION_TAYLOR_CS norm.
*/
#if !(defined AN0 || defined AN1 || defined AN2 || defined AN3)
#pragma message "using AN1 macro as default"
#define AN1
#endif
//#if !(defined AM0 || defined AM2)
//#define AM1
//#endif
#if !(defined BN0 || defined BN1 || defined BN2 || defined BN3)
#pragma message "using BN1 macro as default"
#define BN1
#endif
//#if !(defined BM0 || defined BM2)
//#define BM1
//#endif
//#if !(defined BF0 || defined BF1 || defined BF2 || defined BF3)
//#define BF1
//#endif
// if defined, the pointer B_multipliers[y] corresponds to the q = 1 element;
// otherwise, it corresponds to the q = 0 element, which should be identically zero
#ifdef QPMS_PACKED_B_MULTIPLIERS
#define BQ_OFFSET 1
#else
#define BQ_OFFSET 0
#endif
// Translation operators for real sph. harm. based waves are not yet implemented...
static inline void TROPS_ONLY_EIMF_IMPLEMENTED(qpms_normalisation_t norm) {
if (norm & (QPMS_NORMALISATION_SPHARM_REAL | QPMS_NORMALISATION_REVERSE_AZIMUTHAL_PHASE))
QPMS_NOT_IMPLEMENTED("Translation operators for real or inverse complex spherical harmonics based waves are not implemented.");
}
// Use if only the symmetric form [[A, B], [B, A]] (without additional factors) of translation operator is allowed.
static inline void TROPS_ONLY_AB_SYMMETRIC_NORMS_IMPLEMENTED(qpms_normalisation_t norm) {
switch (norm & QPMS_NORMALISATION_NORM_BITS) {
case QPMS_NORMALISATION_NORM_SPHARM:
case QPMS_NORMALISATION_NORM_POWER:
break; // OK
default:
QPMS_NOT_IMPLEMENTED("Only spherical harmonic and power normalisation supported.");
}
if (
( !(norm & QPMS_NORMALISATION_N_I) != !(norm & QPMS_NORMALISATION_M_I) )
||
( !(norm & QPMS_NORMALISATION_N_MINUS) != !(norm & QPMS_NORMALISATION_M_MINUS) )
)
QPMS_NOT_IMPLEMENTED("Only normalisations without a phase factors between M and N waves are supported.");
}
/*
* References:
* [Xu_old] Yu-Lin Xu, Journal of Computational Physics 127, 285298 (1996)
* [Xu] Yu-Lin Xu, Journal of Computational Physics 139, 137165 (1998)
*/
/*
* GENERAL TODO: use normalised Legendre functions for Kristensson and Taylor conventions directly
* instead of normalising them here (the same applies for csphase).
*/
static const double sqrtpi = 1.7724538509055160272981674833411451827975494561223871;
//static const double ln2 = 0.693147180559945309417232121458176568075500134360255254120;
// Associated Legendre polynomial at zero argument (DLMF 14.5.1)
double qpms_legendre0(int m, int n) {
return pow(2,m) * sqrtpi / tgamma(.5*n - .5*m + .5) / tgamma(.5*n-.5*m);
}
// Derivative of associated Legendre polynomial at zero argument (DLMF 14.5.2)
double qpms_legendreD0(int m, int n) {
return -2 * qpms_legendre0(m, n);
}
static inline int imin(int x, int y) {
return x > y ? y : x;
}
// The uppermost value of q index for the B coefficient terms from [Xu](60).
// N.B. this is different from [Xu_old](79) due to the n vs. n+1 difference.
// However, the trailing terms in [Xu_old] are analytically zero (although
// the numerical values will carry some non-zero rounding error).
static inline int gauntB_Q_max(int M, int n, int mu, int nu) {
return imin(n, imin(nu, (n+nu+1-abs(M+mu))/2));
}
#if 0 //Apparently, this is duplicit to that in bessel.c (which also support complex x)
int qpms_sph_bessel_fill(qpms_bessel_t typ, int lmax, double x, complex double *result_array) {
int retval;
double tmparr[lmax+1];
switch(typ) {
case QPMS_BESSEL_REGULAR:
retval = gsl_sf_bessel_jl_steed_array(lmax, x, tmparr);
for (int l = 0; l <= lmax; ++l) result_array[l] = tmparr[l];
return retval;
break;
case QPMS_BESSEL_SINGULAR: //FIXME: is this precise enough? Would it be better to do it one-by-one?
retval = gsl_sf_bessel_yl_array(lmax,x,tmparr);
for (int l = 0; l <= lmax; ++l) result_array[l] = tmparr[l];
return retval;
break;
case QPMS_HANKEL_PLUS:
case QPMS_HANKEL_MINUS:
retval = gsl_sf_bessel_jl_steed_array(lmax, x, tmparr);
for (int l = 0; l <= lmax; ++l) result_array[l] = tmparr[l];
if(retval) return retval;
retval = gsl_sf_bessel_yl_array(lmax, x, tmparr);
if (typ==QPMS_HANKEL_PLUS)
for (int l = 0; l <= lmax; ++l) result_array[l] += I * tmparr[l];
else
for (int l = 0; l <= lmax; ++l) result_array[l] +=-I * tmparr[l];
return retval;
break;
default:
abort();
//return GSL_EDOM;
}
assert(0);
}
#endif
static inline double qpms_trans_normlogfac(qpms_normalisation_t norm,
int m, int n, int mu, int nu) {
return -0.5*(lgamma(n+m+1)-lgamma(n-m+1)+lgamma(nu-mu+1)-lgamma(nu+mu+1));
}
static inline double qpms_trans_normfac(qpms_normalisation_t norm,
int m, int n, int mu, int nu) {
int csphase = qpms_normalisation_t_csphase(norm);
/* Account for csphase here. Alternatively, this could be done by
* using appropriate csphase in the legendre polynomials when calculating
* the translation operator.
*/
double normfac = (1 == csphase) ? min1pow(m-mu) : 1.;
normfac *= sqrt((n*(n+1.))/(nu*(nu+1.)));
normfac *= sqrt((2.*n+1)/(2.*nu+1));
return normfac;
}
complex double qpms_trans_single_A(qpms_normalisation_t norm,
int m, int n, int mu, int nu, sph_t kdlj,
bool r_ge_d, qpms_bessel_t J) {
TROPS_ONLY_EIMF_IMPLEMENTED(norm);
if(r_ge_d) J = QPMS_BESSEL_REGULAR;
double costheta = cos(kdlj.theta);
int qmax = gaunt_q_max(-m,n,mu,nu); // nemá tu být +m?
// N.B. -m !!!!!!
double a1q[qmax+1];
int err;
gaunt_xu(-m,n,mu,nu,qmax,a1q,&err);
double a1q0 = a1q[0];
if (err) abort();
int csphase = qpms_normalisation_t_csphase(norm);
double leg[gsl_sf_legendre_array_n(n+nu)];
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu,costheta,csphase,leg)) abort();
complex double bes[n+nu+1];
if (qpms_sph_bessel_fill(J, n+nu, kdlj.r, bes)) abort();
complex double sum = 0;
for(int q = 0; q <= qmax; ++q) {
int p = n+nu-2*q;
int Pp_order = mu-m;
//if(p < abs(Pp_order)) continue; // FIXME raději nastav lépe meze
assert(p >= abs(Pp_order));
double a1q_n = a1q[q] / a1q0;
double Pp = leg[gsl_sf_legendre_array_index(p, abs(Pp_order))];
if (Pp_order < 0) Pp *= min1pow(mu-m) * exp(lgamma(1+p+Pp_order)-lgamma(1+p-Pp_order));
complex double zp = bes[p];
complex double summandq = (n*(n+1) + nu*(nu+1) - p*(p+1)) * min1pow(q) * a1q_n * zp * Pp;
sum += summandq; // TODO KAHAN
}
double exponent=(lgamma(2*n+1)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2)
+lgamma(n+nu+m-mu+1)-lgamma(n-m+1)-lgamma(nu+mu+1)
+lgamma(n+nu+1) - lgamma(2*(n+nu)+1));
complex double presum = exp(exponent);
presum *= cexp(I*(mu-m)*kdlj.phi) * min1pow(m) * ipow(nu+n) / (4*n);
double normlogfac = qpms_trans_normlogfac(norm,m,n,mu,nu);
double normfac = qpms_trans_normfac(norm,m,n,mu,nu);
/// N<-N type coefficients w.r.t. Kristensson's convention. Csphase has been already taken into acct ^^^.
normfac *= qpms_normalisation_factor_N_noCS(norm, nu, mu)
/ qpms_normalisation_factor_N_noCS(norm, n, m);
// ipow(n-nu) is the difference from the Taylor formula!
presum *= /*ipow(n-nu) * */
(normfac * exp(normlogfac))
#ifdef AN1
* ipow(n-nu)
#elif defined AN2
* min1pow(-n+nu)
#elif defined AN3
* ipow (nu - n)
#endif
#ifdef AM1
* ipow(-m+mu)
#endif //NNU
#ifdef AM2
* min1pow(-m+mu)
#endif //NNU
#ifdef AM3
* ipow(m-mu)
#endif //NNU
;
return presum * sum;
}
complex double qpms_trans_single_A_Taylor(int m, int n, int mu, int nu, sph_t kdlj,
bool r_ge_d, qpms_bessel_t J) {
if(r_ge_d) J = QPMS_BESSEL_REGULAR;
double costheta = cos(kdlj.theta);
int qmax = gaunt_q_max(-m,n,mu,nu); // nemá tu být +m?
// N.B. -m !!!!!!
double a1q[qmax+1];
int err;
gaunt_xu(-m,n,mu,nu,qmax,a1q,&err);
double a1q0 = a1q[0];
if (err) abort();
double leg[gsl_sf_legendre_array_n(n+nu)];
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu,costheta,-1,leg)) abort();
complex double bes[n+nu+1];
if (qpms_sph_bessel_fill(J, n+nu, kdlj.r, bes)) abort();
complex double sum = 0;
for(int q = 0; q <= qmax; ++q) {
int p = n+nu-2*q;
int Pp_order = mu-m;
//if(p < abs(Pp_order)) continue; // FIXME raději nastav lépe meze
assert(p >= abs(Pp_order));
double a1q_n = a1q[q] / a1q0;
double Pp = leg[gsl_sf_legendre_array_index(p, abs(Pp_order))];
if (Pp_order < 0) Pp *= min1pow(mu-m) * exp(lgamma(1+p+Pp_order)-lgamma(1+p-Pp_order));
complex double zp = bes[p];
complex double summandq = (n*(n+1) + nu*(nu+1) - p*(p+1)) * min1pow(q) * a1q_n * zp * Pp;
sum += summandq; // TODO KAHAN
}
double exponent=(lgamma(2*n+1)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2)
+lgamma(n+nu+m-mu+1)-lgamma(n-m+1)-lgamma(nu+mu+1)
+lgamma(n+nu+1) - lgamma(2*(n+nu)+1));
complex double presum = exp(exponent);
presum *= cexp(I*(mu-m)*kdlj.phi) * min1pow(m) * ipow(nu+n) / (4*n);
// N.B. ipow(nu-n) is different from the general formula!
complex double prenormratio = ipow(nu-n) * sqrt(((2.*nu+1)/(2.*n+1))* exp(
lgamma(n+m+1)-lgamma(n-m+1)+lgamma(nu-mu+1)-lgamma(nu+mu+1)));
return (presum / prenormratio) * sum;
}
// [Xu_old], eq. (83)
complex double qpms_trans_single_B_Xu(int m, int n, int mu, int nu, sph_t kdlj,
bool r_ge_d, qpms_bessel_t J) {
assert(0); // FIXME probably gives wrong values, do not use.
if(r_ge_d) J = QPMS_BESSEL_REGULAR;
double costheta = cos(kdlj.theta);
// TODO Qmax cleanup: can I replace Qmax with realQmax???
int q2max = gaunt_q_max(-m-1,n+1,mu+1,nu);
int Qmax = gaunt_q_max(-m,n+1,mu,nu);
int realQmax = gauntB_Q_max(-m, n, mu, nu);
double a2q[q2max+1], a3q[Qmax+1], a2q0, a3q0;
int err;
if (mu == nu) {
for (int q = 0; q <= q2max; ++q)
a2q[q] = 0;
a2q0 = 1;
}
else {
gaunt_xu(-m-1,n+1,mu+1,nu,q2max,a2q,&err); if (err) abort();
a2q0 = a2q[0];
}
gaunt_xu(-m,n+1,mu,nu,Qmax,a3q,&err); if (err) abort();
a3q0 = a3q[0];
double leg[gsl_sf_legendre_array_n(n+nu+1)];
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu+1,costheta,-1,leg)) abort();
complex double bes[n+nu+2];
if (qpms_sph_bessel_fill(J, n+nu+1, kdlj.r, bes)) abort();
complex double sum = 0;
for (int q = 0; q <= realQmax; ++q) {
int p = n+nu-2*q;
double a2q_n = a2q[q]/a2q0;
double a3q_n = a3q[q]/a3q0;
complex double zp_ = bes[p+1];
int Pp_order_ = mu-m;
//if(p+1 < abs(Pp_order_)) continue; // FIXME raději nastav lépe meze
assert(p+1 >= abs(Pp_order_));
double Pp_ = leg[gsl_sf_legendre_array_index(p+1, abs(Pp_order_))];
if (Pp_order_ < 0) Pp_ *= min1pow(mu-m) * exp(lgamma(1+1+p+Pp_order_)-lgamma(1+1+p-Pp_order_));
complex double summandq = ((2*(n+1)*(nu-mu)*a2q_n
-(-nu*(nu+1) - n*(n+3) - 2*mu*(n+1)+p*(p+3))* a3q_n)
*min1pow(q) * zp_ * Pp_);
sum += summandq; // TODO KAHAN
}
double exponent=(lgamma(2*n+3)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2)
+lgamma(n+nu+m-mu+2)-lgamma(n-m+1)-lgamma(nu+mu+1)
+lgamma(n+nu+2) - lgamma(2*(n+nu)+3));
complex double presum = exp(exponent);
presum *= cexp(I*(mu-m)*kdlj.phi) * min1pow(m) * ipow(nu+n+1) / (
(4*n)*(n+1)*(n+m+1));
// Taylor normalisation v2, proven to be equivalent
complex double prenormratio = ipow(nu-n);
return (presum / prenormratio) * sum;
}
complex double qpms_trans_single_B(qpms_normalisation_t norm,
int m, int n, int mu, int nu, sph_t kdlj,
bool r_ge_d, qpms_bessel_t J) {
TROPS_ONLY_EIMF_IMPLEMENTED(norm);
#ifndef USE_BROKEN_SINGLETC
assert(0); // FIXME probably gives wrong values, do not use.
#endif
if(r_ge_d) J = QPMS_BESSEL_REGULAR;
double costheta = cos(kdlj.theta);
int q2max = gaunt_q_max(-m-1,n+1,mu+1,nu);
int Qmax = gaunt_q_max(-m,n+1,mu,nu);
int realQmax = gauntB_Q_max(-m,n,mu,nu);
double a2q[q2max+1], a3q[Qmax+1], a2q0, a3q0;
int err;
if (mu == nu) {
for (int q = 0; q <= q2max; ++q)
a2q[q] = 0;
a2q0 = 1;
}
else {
gaunt_xu(-m-1,n+1,mu+1,nu,q2max,a2q,&err); if (err) abort();
a2q0 = a2q[0];
}
gaunt_xu(-m,n+1,mu,nu,Qmax,a3q,&err); if (err) abort();
a3q0 = a3q[0];
int csphase = qpms_normalisation_t_csphase(norm);
double leg[gsl_sf_legendre_array_n(n+nu+1)];
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu+1,costheta,csphase,leg)) abort();
complex double bes[n+nu+2];
if (qpms_sph_bessel_fill(J, n+nu+1, kdlj.r, bes)) abort();
complex double sum = 0;
for (int q = 0; q <= realQmax; ++q) {
int p = n+nu-2*q;
double a2q_n = a2q[q]/a2q0;
double a3q_n = a3q[q]/a3q0;
complex double zp_ = bes[p+1];
int Pp_order_ = mu-m;
//if(p+1 < abs(Pp_order_)) continue; // FIXME raději nastav lépe meze
assert(p+1 >= abs(Pp_order_));
double Pp_ = leg[gsl_sf_legendre_array_index(p+1, abs(Pp_order_))];
if (Pp_order_ < 0) Pp_ *= min1pow(mu-m) * exp(lgamma(1+1+p+Pp_order_)-lgamma(1+1+p-Pp_order_));
complex double summandq = ((2*(n+1)*(nu-mu)*a2q_n
-(-nu*(nu+1) - n*(n+3) - 2*mu*(n+1)+p*(p+3))* a3q_n)
*min1pow(q) * zp_ * Pp_);
sum += summandq; //TODO KAHAN
}
double exponent=(lgamma(2*n+3)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2)
+lgamma(n+nu+m-mu+2)-lgamma(n-m+1)-lgamma(nu+mu+1)
+lgamma(n+nu+2) - lgamma(2*(n+nu)+3));
complex double presum = exp(exponent);
presum *= cexp(I*(mu-m)*kdlj.phi) * min1pow(m) * ipow(nu+n+1) / (
(4*n)*(n+1)*(n+m+1));
double normlogfac = qpms_trans_normlogfac(norm,m,n,mu,nu);
double normfac = qpms_trans_normfac(norm,m,n,mu,nu);
/// N<-M type coefficients w.r.t. Kristensson's convention. Csphase has been already taken into acct ^^^.
normfac *= qpms_normalisation_factor_M_noCS(norm, nu, mu)
/ qpms_normalisation_factor_N_noCS(norm, n, m);
// ipow(n-nu) is the difference from the "old Taylor" formula
presum *= /*ipow(n-nu) * */(exp(normlogfac) * normfac)
#ifdef AN1
* ipow(n-nu)
#elif defined AN2
* min1pow(-n+nu)
#elif defined AN3
* ipow (nu - n)
#endif
#ifdef AM1
* ipow(-m+mu)
#endif //NNU
#ifdef AM2
* min1pow(-m+mu)
#endif //NNU
#ifdef AM3
* ipow(m-mu)
#endif //NNU
;
return presum * sum;
}
complex double qpms_trans_single_B_Taylor(int m, int n, int mu, int nu, sph_t kdlj,
bool r_ge_d, qpms_bessel_t J) {
assert(0); // FIXME probably gives wrong values, do not use.
if(r_ge_d) J = QPMS_BESSEL_REGULAR;
double costheta = cos(kdlj.theta);
int q2max = gaunt_q_max(-m-1,n+1,mu+1,nu);
int Qmax = gaunt_q_max(-m,n+1,mu,nu);
int realQmax = gauntB_Q_max(-m,n,mu,nu);
double a2q[q2max+1], a3q[Qmax+1], a2q0, a3q0;
int err;
if (mu == nu) {
for (int q = 0; q <= q2max; ++q)
a2q[q] = 0;
a2q0 = 1;
}
else {
gaunt_xu(-m-1,n+1,mu+1,nu,q2max,a2q,&err); if (err) abort();
a2q0 = a2q[0];
}
gaunt_xu(-m,n+1,mu,nu,Qmax,a3q,&err); if (err) abort();
a3q0 = a3q[0];
double leg[gsl_sf_legendre_array_n(n+nu+1)];
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu+1,costheta,-1,leg)) abort();
complex double bes[n+nu+2];
if (qpms_sph_bessel_fill(J, n+nu+1, kdlj.r, bes)) abort();
complex double sum = 0;
for (int q = 0; q <= realQmax; ++q) {
int p = n+nu-2*q;
double a2q_n = a2q[q]/a2q0;
double a3q_n = a3q[q]/a3q0;
complex double zp_ = bes[p+1];
int Pp_order_ = mu-m;
//if(p+1 < abs(Pp_order_)) continue; // FIXME raději nastav lépe meze
assert(p+1 >= abs(Pp_order_));
double Pp_ = leg[gsl_sf_legendre_array_index(p+1, abs(Pp_order_))];
if (Pp_order_ < 0) Pp_ *= min1pow(mu-m) * exp(lgamma(1+1+p+Pp_order_)-lgamma(1+1+p-Pp_order_));
complex double summandq = ((2*(n+1)*(nu-mu)*a2q_n
-(-nu*(nu+1) - n*(n+3) - 2*mu*(n+1)+p*(p+3))* a3q_n)
*min1pow(q) * zp_ * Pp_);
sum += summandq; //TODO KAHAN
}
double exponent=(lgamma(2*n+3)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2)
+lgamma(n+nu+m-mu+2)-lgamma(n-m+1)-lgamma(nu+mu+1)
+lgamma(n+nu+2) - lgamma(2*(n+nu)+3));
complex double presum = exp(exponent);
presum *= cexp(I*(mu-m)*kdlj.phi) * min1pow(m) * ipow(nu+n+1) / (
(4*n)*(n+1)*(n+m+1));
// Taylor normalisation v2, proven to be equivalent
// ipow(nu-n) is different from the new general formula!!!
complex double prenormratio = ipow(nu-n) * sqrt(((2.*nu+1)/(2.*n+1))* exp(
lgamma(n+m+1)-lgamma(n-m+1)+lgamma(nu-mu+1)-lgamma(nu+mu+1)));
return (presum / prenormratio) * sum;
}
complex double qpms_trans_single_A_Taylor_ext(int m, int n, int mu, int nu,
double kdlj_r, double kdlj_theta, double kdlj_phi, int r_ge_d, int J) {
sph_t kdlj = {kdlj_r, kdlj_theta, kdlj_phi};
return qpms_trans_single_A_Taylor(m,n,mu,nu,kdlj,r_ge_d,J);
}
complex double qpms_trans_single_B_Taylor_ext(int m, int n, int mu, int nu,
double kdlj_r, double kdlj_theta, double kdlj_phi, int r_ge_d, int J) {
sph_t kdlj = {kdlj_r, kdlj_theta, kdlj_phi};
return qpms_trans_single_B_Taylor(m,n,mu,nu,kdlj,r_ge_d,J);
}
void qpms_trans_calculator_free(qpms_trans_calculator *c) {
free(c->A_multipliers[0]);
free(c->A_multipliers);
free(c->B_multipliers[0]);
free(c->B_multipliers);
#ifdef LATTICESUMS
qpms_ewald3_constants_free(e3c);
#endif
#ifdef LATTICESUMS_OLD
free(c->hct);
#endif
free(c->legendre0);
free(c);
}
static inline size_t qpms_trans_calculator_index_mnmunu(const qpms_trans_calculator *c,
int m, int n, int mu, int nu){
return c->nelem * qpms_mn2y(m,n) + qpms_mn2y(mu,nu);
}
static inline size_t qpms_trans_calculator_index_yyu(const qpms_trans_calculator *c,
size_t y, size_t yu) {
return c->nelem * y + yu;
}
#define SQ(x) ((x)*(x))
static inline double fsq(double x) {return x * x; }
static void qpms_trans_calculator_multipliers_A_general(
qpms_normalisation_t norm,
complex double *dest, int m, int n, int mu, int nu, int qmax) {
assert(qmax == gaunt_q_max(-m,n,mu,nu));
double a1q[qmax+1];
int err;
gaunt_xu(-m,n,mu,nu,qmax,a1q,&err);
if (err) abort();
double a1q0 = a1q[0];
double normlogfac = qpms_trans_normlogfac(norm,m,n,mu,nu);
double normfac = qpms_trans_normfac(norm,m,n,mu,nu);
/// N<-N type coefficients w.r.t. Kristensson's convention. Csphase has been already taken into acct ^^^.
normfac *= qpms_normalisation_factor_N_noCS(norm, nu, mu)
/ qpms_normalisation_factor_N_noCS(norm, n, m);
normfac *= min1pow(m); //different from old Taylor
double exponent=(lgamma(2*n+1)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2)
+lgamma(n+nu+m-mu+1)-lgamma(n-m+1)-lgamma(nu+mu+1)
+lgamma(n+nu+1) - lgamma(2*(n+nu)+1))
+ normlogfac;
complex double presum = exp(exponent);
presum *= normfac / (4.*n);
presum *= ipow(n+nu); // different from old Taylor
for(int q = 0; q <= qmax; q++) {
int p = n+nu-2*q;
int Pp_order = mu - m;
assert(p >= abs(Pp_order));
double a1q_n = a1q[q] / a1q0;
// Assuming non_normalized legendre polynomials (normalisation done here by hand)!
double Ppfac = (Pp_order >= 0) ? 1 :
min1pow(mu-m) * exp(lgamma(1+p+Pp_order)-lgamma(1+p-Pp_order));
double summandfac = (n*(n+1) + nu*(nu+1) - p*(p+1)) * min1pow(q) * a1q_n;
dest[q] = presum * summandfac * Ppfac
#ifdef AN1
* ipow(n-nu)
#elif defined AN2
* min1pow(-n+nu)
#elif defined AN3
* ipow (nu - n)
#endif
#ifdef AM1
* ipow(-m+mu)
#endif //NNU
#ifdef AM2
* min1pow(-m+mu)
#endif //NNU
#ifdef AM3
* ipow(m-mu)
#endif //NNU
;
// FIXME I might not need complex here
}
}
// as in [Xu](61)
double cruzan_bfactor(int M, int n, int mu, int nu, int p) {
double logprefac = lgamma(n+M+1) - lgamma(n-M+1) + lgamma(nu+mu+1) - lgamma(nu-mu+1)
+ lgamma(p-M-mu+2) - lgamma(p+M+mu+2);
logprefac *= 0.5;
return min1pow(mu+M) * (2*p+3) * exp(logprefac)
* gsl_sf_coupling_3j(2*n, 2*nu, 2*(p+1), 2*M, 2*mu, 2*(-M-mu))
* gsl_sf_coupling_3j(2*n, 2*nu, 2*p, 0, 0, 0);
}
void qpms_trans_calculator_multipliers_B_general(
qpms_normalisation_t norm,
complex double *dest, int m, int n, int mu, int nu, int Qmax){
// This is according to the Cruzan-type formula [Xu](59)
assert(Qmax == gauntB_Q_max(-m,n,mu,nu));
double normlogfac= qpms_trans_normlogfac(norm,m,n,mu,nu);
double normfac = qpms_trans_normfac(norm,m,n,mu,nu);
/// N<-M type coefficients w.r.t. Kristensson's convention. Csphase has been already taken into acct ^^^.
normfac *= qpms_normalisation_factor_M_noCS(norm, nu, mu)
/ qpms_normalisation_factor_N_noCS(norm, n, m);
double presum = min1pow(1-m) * (2*nu+1)/(2.*(n*(n+1)))
* exp(lgamma(n+m+1) - lgamma(n-m+1) + lgamma(nu-mu+1) - lgamma(nu+mu+1)
+ normlogfac)
* normfac;
for(int q = BQ_OFFSET; q <= Qmax; ++q) {
int p = n+nu-2*q;
int Pp_order = mu - m;
// Assuming non-normalised Legendre polynomials, normalise here by hand.
// Ppfac_ differs from Ppfac in the A-case by the substitution p->p+1
double Ppfac_ = (Pp_order >= 0)? 1 :
min1pow(mu-m) * exp(lgamma(1+1+p+Pp_order)-lgamma(1+1+p-Pp_order));
double t = sqrt(
(isq(p+1)-isq(n-nu))
* (isq(n+nu+1)-isq(p+1))
);
dest[q-BQ_OFFSET] = presum * t * Ppfac_
* cruzan_bfactor(-m,n,mu,nu,p) * ipow(p+1)
#ifdef BN1
* ipow(n-nu)
#elif defined BN2
* min1pow(-n+nu)
#elif defined BN3
* ipow (nu - n)
#endif
#ifdef BM1
* ipow(-m+mu)
#endif
#ifdef BM2
* min1pow(-m+mu)
#endif
#ifdef BM3
* ipow(m-mu)
#endif
#ifdef BF1
* I
#elif defined BF2
* (-1)
#elif defined BF3
* (-I)
#endif
;// NNU
}
}
/*static*/ void qpms_trans_calculator_multipliers_B_general_oldXu(
qpms_normalisation_t norm,
complex double *dest, int m, int n, int mu, int nu, int Qmax) {
assert(0); // FIXME probably gives wrong values, do not use.
assert(Qmax == gauntB_Q_max(-m,n,mu,nu));
int q2max = gaunt_q_max(-m-1,n+1,mu+1,nu);
// assert(Qmax == q2max);
// FIXME is it safe to replace q2max with Qmax in gaunt_xu??
double a2q[q2max+1], a3q[Qmax+1], a2q0, a3q0;
int err;
if (mu == nu) {
for (int q = 0; q <= q2max; ++q)
a2q[q] = 0;
a2q0 = 1;
}
else {
gaunt_xu(-m-1,n+1,mu+1,nu,q2max,a2q,&err); if (err) abort();
a2q0 = a2q[0];
}
gaunt_xu(-m,n+1,mu,nu,q2max,a3q,&err); if (err) abort(); // FIXME this should probably go away
a3q0 = a3q[0];
int csphase = qpms_normalisation_t_csphase(norm); //TODO FIXME use this
double normlogfac= qpms_trans_normlogfac(norm,m,n,mu,nu);
double normfac = qpms_trans_normfac(norm,m,n,mu,nu);
/// N<-M type coefficients w.r.t. Kristensson's convention. Csphase has been already taken into acct ^^^.
normfac *= qpms_normalisation_factor_M_noCS(norm, nu, mu)
/ qpms_normalisation_factor_N_noCS(norm, n, m);
// TODO use csphase to modify normfac here!!!!
// normfac = xxx ? -normfac : normfac;
normfac *= min1pow(m);//different from old taylor
double exponent=(lgamma(2*n+3)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2)
+lgamma(n+nu+m-mu+2)-lgamma(n-m+1)-lgamma(nu+mu+1)
+lgamma(n+nu+2) - lgamma(2*(n+nu)+3))
+normlogfac;
complex double presum = exp(exponent);
presum *= I * ipow(nu+n) /*different from old Taylor */ * normfac / (
(4*n)*(n+1)*(n+m+1));
for (int q = BQ_OFFSET; q <= Qmax; ++q) {
int p = n+nu-2*q;
double a2q_n = a2q[q]/a2q0;
double a3q_n = a3q[q]/a3q0;
int Pp_order_ = mu-m;
//if(p+1 < abs(Pp_order_)) continue; // FIXME raději nastav lépe meze
assert(p+1 >= abs(Pp_order_));
double Ppfac = (Pp_order_ >= 0) ? 1 :
min1pow(mu-m) * exp(lgamma(1+1+p+Pp_order_)-lgamma(1+1+p-Pp_order_));
double summandq = ((2*(n+1)*(nu-mu)*a2q_n
-(-nu*(nu+1) - n*(n+3) - 2*mu*(n+1)+p*(p+3))* a3q_n)
*min1pow(q));
dest[q-BQ_OFFSET] = Ppfac * summandq * presum;
}
}
//#if 0
static void qpms_trans_calculator_multipliers_A_Taylor(
complex double *dest, int m, int n, int mu, int nu, int qmax) {
assert(qmax == gaunt_q_max(-m,n,mu,nu));
double a1q[qmax+1];
int err;
gaunt_xu(-m,n,mu,nu,qmax,a1q,&err);
if (err) abort();
double a1q0 = a1q[0];
double exponent=(lgamma(2*n+1)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2)
+lgamma(n+nu+m-mu+1)-lgamma(n-m+1)-lgamma(nu+mu+1)
+lgamma(n+nu+1) - lgamma(2*(n+nu)+1)) - 0.5*( // ex-prenormratio
lgamma(n+m+1)-lgamma(n-m+1)+lgamma(nu-mu+1)-lgamma(nu+mu+1));
double presum = exp(exponent);
presum *= min1pow(m+n) * sqrt((2.*n+1)/(2.*nu+1)) / (4*n);
for(int q = 0; q <= qmax; q++) {
int p = n+nu-2*q;
int Pp_order = mu - m;
assert(p >= abs(Pp_order));
double a1q_n = a1q[q] / a1q0;
// Assuming non_normalized legendre polynomials!
double Ppfac = (Pp_order >= 0) ? 1 :
min1pow(mu-m) * exp(lgamma(1+p+Pp_order)-lgamma(1+p-Pp_order));
double summandfac = (n*(n+1) + nu*(nu+1) - p*(p+1)) * min1pow(q) * a1q_n;
dest[q] = presum * summandfac * Ppfac;
// FIXME I might not need complex here
}
}
//#endif
#if 0
static void qpms_trans_calculator_multipliers_A_Taylor(
complex double *dest, int m, int n, int mu, int nu, int qmax) {
assert(qmax == gaunt_q_max(-m,n,mu,nu));
double a1q[qmax+1];
int err;
gaunt_xu(-m,n,mu,nu,qmax,a1q,&err);
if (err) abort();
double a1q0 = a1q[0];
for(int q = 0; q <= qmax; ++q) {
int p = n+nu-2*q;
int Pp_order = mu-m;
//if(p < abs(Pp_order)) continue; // FIXME raději nastav lépe meze
assert(p >= abs(Pp_order));
double a1q_n = a1q[q] / a1q0;
//double Pp = leg[gsl_sf_legendre_array_index(p, abs(Pp_order))];
//complex double zp = bes[p];
dest[q] = (n*(n+1) + nu*(nu+1) - p*(p+1)) * min1pow(q) * a1q_n /* * zp * Pp*/;
if (Pp_order < 0) dest[q] *= min1pow(mu-m) * exp(lgamma(1+p+Pp_order)-lgamma(1+p-Pp_order));
//sum += summandq;
}
double exponent=(lgamma(2*n+1)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2)
+lgamma(n+nu+m-mu+1)-lgamma(n-m+1)-lgamma(nu+mu+1)
+lgamma(n+nu+1) - lgamma(2*(n+nu)+1));
complex double presum = exp(exponent);
presum *=/* cexp(I*(mu-m)*kdlj.phi) * */ min1pow(m) * ipow(nu+n) / (4*n);
complex double prenormratio = ipow(nu-n) * sqrt(((2.*nu+1)/(2.*n+1))* exp(
lgamma(n+m+1)-lgamma(n-m+1)+lgamma(nu-mu+1)-lgamma(nu+mu+1)));
//return (presum / prenormratio) * sum;
for(int q=0;q<=qmax;++q) dest[q] *= presum / prenormratio;
}
#endif
static void qpms_trans_calculator_multipliers_B_Taylor(
complex double *dest, int m, int n, int mu, int nu, int Qmax) {
assert(0); // FIXME probably gives wrong values, do not use.
assert(Qmax == gauntB_Q_max(-m,n,mu,nu));
int q2max = gaunt_q_max(-m-1,n+1,mu+1,nu);
//assert(Qmax == q2max);
// FIXME remove the q2max variable altogether, as it is probably equal
// to Qmax
double a2q[q2max+1], a3q[q2max+1], a2q0, a3q0;
int err;
if (mu == nu) {
for (int q = 0; q <= q2max; ++q)
a2q[q] = 0;
a2q0 = 1;
}
else {
gaunt_xu(-m-1,n+1,mu+1,nu,q2max,a2q,&err); if (err) abort();
a2q0 = a2q[0];
}
gaunt_xu(-m,n+1,mu,nu,q2max,a3q,&err); if (err) abort();
a3q0 = a3q[0];
double exponent=(lgamma(2*n+3)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2)
+lgamma(n+nu+m-mu+2)-lgamma(n-m+1)-lgamma(nu+mu+1)
+lgamma(n+nu+2) - lgamma(2*(n+nu)+3)) - 0.5 * (
lgamma(n+m+1)-lgamma(n-m+1)+lgamma(nu-mu+1)
-lgamma(nu+mu+1));
complex double presum = exp(exponent);
presum *= I * (min1pow(m+n) *sqrt((2.*n+1)/(2.*nu+1)) / (
(4*n)*(n+1)*(n+m+1)));
for (int q = BQ_OFFSET; q <= Qmax; ++q) {
int p = n+nu-2*q;
double a2q_n = a2q[q]/a2q0;
double a3q_n = a3q[q]/a3q0;
int Pp_order_ = mu-m;
//if(p+1 < abs(Pp_order_)) continue; // FIXME raději nastav lépe meze
assert(p+1 >= abs(Pp_order_));
double Ppfac = (Pp_order_ >= 0) ? 1 :
min1pow(mu-m) * exp(lgamma(1+1+p+Pp_order_)-lgamma(1+1+p-Pp_order_));
double summandq = ((2*(n+1)*(nu-mu)*a2q_n
-(-nu*(nu+1) - n*(n+3) - 2*mu*(n+1)+p*(p+3))* a3q_n)
*min1pow(q));
dest[q-BQ_OFFSET] = Ppfac * summandq * presum;
}
}
int qpms_trans_calculator_multipliers_A(qpms_normalisation_t norm, complex double *dest, int m, int n, int mu, int nu, int qmax) {
qpms_trans_calculator_multipliers_A_general(norm, dest, m, n, mu, nu, qmax);
return 0;
}
int qpms_trans_calculator_multipliers_B(qpms_normalisation_t norm, complex double *dest, int m, int n, int mu, int nu, int Qmax) {
qpms_trans_calculator_multipliers_B_general(norm, dest, m, n, mu, nu, Qmax);
return 0;
}
qpms_trans_calculator
*qpms_trans_calculator_init (const int lMax, const qpms_normalisation_t normalisation) {
TROPS_ONLY_EIMF_IMPLEMENTED(normalisation);
assert(lMax > 0);
qpms_trans_calculator *c = malloc(sizeof(qpms_trans_calculator));
c->lMax = lMax;
c->nelem = lMax * (lMax+2);
c->A_multipliers = malloc((1+SQ(c->nelem)) * sizeof(complex double *));
c->B_multipliers = malloc((1+SQ(c->nelem)) * sizeof(complex double *));
c->normalisation = normalisation;
size_t *qmaxes = malloc(SQ(c->nelem) * sizeof(size_t));
size_t qmaxsum = 0;
for(size_t y = 0; y < c->nelem; y++)
for(size_t yu = 0; yu < c->nelem; yu++) {
int m,n, mu, nu;
qpms_y2mn_p(y,&m,&n);
qpms_y2mn_p(yu,&mu,&nu);
qmaxsum += 1 + (
qmaxes[qpms_trans_calculator_index_yyu(c,y,yu)]
= gaunt_q_max(-m,n,mu,nu));
}
c->A_multipliers[0] = malloc(qmaxsum * sizeof(complex double));
// calculate multiplier beginnings
for(size_t i = 0; i < SQ(c->nelem); ++i)
c->A_multipliers[i+1] = c->A_multipliers[i] + qmaxes[i] + 1;
// calculate the multipliers
for(size_t y = 0; y < c->nelem; ++y)
for(size_t yu = 0; yu < c->nelem; ++yu) {
size_t i = y * c->nelem + yu;
int m, n, mu, nu;
qpms_y2mn_p(y, &m, &n);
qpms_y2mn_p(yu, &mu, &nu);
qpms_trans_calculator_multipliers_A(normalisation,
c->A_multipliers[i], m, n, mu, nu, qmaxes[i]);
}
qmaxsum = 0;
for(size_t y=0; y < c->nelem; y++)
for(size_t yu = 0; yu < c->nelem; yu++) {
int m, n, mu, nu;
qpms_y2mn_p(y,&m,&n);
qpms_y2mn_p(yu,&mu,&nu);
qmaxsum += (1 - BQ_OFFSET) + (
qmaxes[qpms_trans_calculator_index_yyu(c,y,yu)]
= gauntB_Q_max(-m,n,mu,nu));
}
c->B_multipliers[0] = malloc(qmaxsum * sizeof(complex double));
// calculate multiplier beginnings
for(size_t i = 0; i < SQ(c->nelem); ++i)
c->B_multipliers[i+1] = c->B_multipliers[i] + qmaxes[i] + (1 - BQ_OFFSET);
// calculate the multipliers
for(size_t y = 0; y < c->nelem; ++y)
for(size_t yu = 0; yu < c->nelem; ++yu) {
size_t i = y * c->nelem + yu;
int m, n, mu, nu;
qpms_y2mn_p(y, &m, &n);
qpms_y2mn_p(yu, &mu, &nu);
qpms_trans_calculator_multipliers_B(normalisation,
c->B_multipliers[i], m, n, mu, nu, qmaxes[i]);
}
free(qmaxes);
#ifdef LATTICESUMS_OLD
c->hct = hankelcoefftable_init(2*lMax+1);
#endif
#ifdef LATTICESUMS32
c->e3c = qpms_ewald3_constants_init(2 * lMax + 1, /*csphase*/ qpms_normalisation_t_csphase(normalisation));
#endif
c->legendre0 = malloc(gsl_sf_legendre_array_n(2*lMax+1) * sizeof(double));
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,2*lMax+1,
0,-1,c->legendre0)) abort(); // TODO maybe use some "precise" analytical formula instead?
return c;
}
static inline complex double qpms_trans_calculator_get_A_precalcbuf(const qpms_trans_calculator *c,
int m, int n, int mu, int nu, sph_t kdlj,
bool r_ge_d, qpms_bessel_t J,
const complex double *bessel_buf, const double *legendre_buf) {
TROPS_ONLY_EIMF_IMPLEMENTED(c->normalisation);
size_t i = qpms_trans_calculator_index_mnmunu(c, m, n, mu, nu);
size_t qmax = c->A_multipliers[i+1] - c->A_multipliers[i] - 1;
assert(qmax == gaunt_q_max(-m,n,mu,nu));
complex double sum, kahanc;
ckahaninit(&sum, &kahanc);
for(size_t q = 0; q <= qmax; ++q) {
int p = n+nu-2*q;
double Pp = legendre_buf[gsl_sf_legendre_array_index(p, abs(mu-m))];
complex double zp = bessel_buf[p];
complex double multiplier = c->A_multipliers[i][q];
ckahanadd(&sum, &kahanc, Pp * zp * multiplier);
}
complex double eimf = cexp(I*(mu-m)*kdlj.phi);
return sum * eimf;
}
complex double qpms_trans_calculator_get_A_buf(const qpms_trans_calculator *c,
int m, int n, int mu, int nu, sph_t kdlj,
bool r_ge_d, qpms_bessel_t J,
complex double *bessel_buf, double *legendre_buf) {
// This functions gets preallocated memory for bessel and legendre functions, but computes them itself
if (r_ge_d) J = QPMS_BESSEL_REGULAR;
if (0 == kdlj.r && J != QPMS_BESSEL_REGULAR)
// TODO warn?
return NAN+I*NAN;
int csphase = qpms_normalisation_t_csphase(c->normalisation);
double costheta = cos(kdlj.theta);
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu,
costheta,csphase,legendre_buf)) abort();
if (qpms_sph_bessel_fill(J, n+nu+1, kdlj.r, bessel_buf)) abort();
return qpms_trans_calculator_get_A_precalcbuf(c,m,n,mu,nu,
kdlj,r_ge_d,J,bessel_buf,legendre_buf);
}
static inline complex double qpms_trans_calculator_get_B_precalcbuf(const qpms_trans_calculator *c,
int m, int n, int mu, int nu, sph_t kdlj,
bool r_ge_d, qpms_bessel_t J,
const complex double *bessel_buf, const double *legendre_buf) {
TROPS_ONLY_EIMF_IMPLEMENTED(c->normalisation);
size_t i = qpms_trans_calculator_index_mnmunu(c, m, n, mu, nu);
size_t qmax = c->B_multipliers[i+1] - c->B_multipliers[i] - (1 - BQ_OFFSET);
assert(qmax == gauntB_Q_max(-m,n,mu,nu));
complex double sum, kahanc;
ckahaninit(&sum, &kahanc);
for(int q = BQ_OFFSET; q <= qmax; ++q) {
int p = n+nu-2*q;
double Pp_ = legendre_buf[gsl_sf_legendre_array_index(p+1, abs(mu-m))];
complex double zp_ = bessel_buf[p+1];
complex double multiplier = c->B_multipliers[i][q-BQ_OFFSET];
ckahanadd(&sum, &kahanc, Pp_ * zp_ * multiplier);
}
complex double eimf = cexp(I*(mu-m)*kdlj.phi);
return sum * eimf;
}
complex double qpms_trans_calculator_get_B_buf(const qpms_trans_calculator *c,
int m, int n, int mu, int nu, sph_t kdlj,
bool r_ge_d, qpms_bessel_t J,
complex double *bessel_buf, double *legendre_buf) {
// This functions gets preallocated memory for bessel and legendre functions, but computes them itself
if (r_ge_d) J = QPMS_BESSEL_REGULAR;
if (0 == kdlj.r && J != QPMS_BESSEL_REGULAR)
// TODO warn?
return NAN+I*NAN;
int csphase = qpms_normalisation_t_csphase(c->normalisation);
double costheta = cos(kdlj.theta);
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu+1,
costheta,csphase,legendre_buf)) abort();
if (qpms_sph_bessel_fill(J, n+nu+1, kdlj.r, bessel_buf)) abort();
return qpms_trans_calculator_get_B_precalcbuf(c,m,n,mu,nu,
kdlj,r_ge_d,J,bessel_buf,legendre_buf);
}
int qpms_trans_calculator_get_AB_buf_p(const qpms_trans_calculator *c,
complex double *Adest, complex double *Bdest,
int m, int n, int mu, int nu, sph_t kdlj,
bool r_ge_d, qpms_bessel_t J,
complex double *bessel_buf, double *legendre_buf) {
if (r_ge_d) J = QPMS_BESSEL_REGULAR;
if (0 == kdlj.r && J != QPMS_BESSEL_REGULAR) {
*Adest = NAN+I*NAN;
*Bdest = NAN+I*NAN;
// TODO warn? different return value?
return 0;
}
double costheta = cos(kdlj.theta);
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu+1,
costheta,-1,legendre_buf)) abort();
if (qpms_sph_bessel_fill(J, n+nu+1, kdlj.r, bessel_buf)) abort();
*Adest = qpms_trans_calculator_get_A_precalcbuf(c,m,n,mu,nu,
kdlj,r_ge_d,J,bessel_buf,legendre_buf);
*Bdest = qpms_trans_calculator_get_B_precalcbuf(c,m,n,mu,nu,
kdlj,r_ge_d,J,bessel_buf,legendre_buf);
return 0;
}
int qpms_trans_calculator_get_AB_arrays_buf(const qpms_trans_calculator *c,
complex double *Adest, complex double *Bdest,
size_t deststride, size_t srcstride,
sph_t kdlj, bool r_ge_d, qpms_bessel_t J,
complex double *bessel_buf, double *legendre_buf) {
if (r_ge_d) J = QPMS_BESSEL_REGULAR;
if (0 == kdlj.r && J != QPMS_BESSEL_REGULAR) {
for (size_t i = 0; i < c->nelem; ++i)
for (size_t j = 0; j < c->nelem; ++j) {
*(Adest + i*srcstride + j*deststride) = NAN+I*NAN;
*(Bdest + i*srcstride + j*deststride) = NAN+I*NAN;
}
// TODO warn? different return value?
return 0;
}
{
double costheta = cos(kdlj.theta);
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,2*c->lMax+1,
costheta,-1,legendre_buf)) abort();
if (qpms_sph_bessel_fill(J, 2*c->lMax+1, kdlj.r, bessel_buf)) abort();
size_t desti = 0, srci = 0;
for (int n = 1; n <= c->lMax; ++n) for (int m = -n; m <= n; ++m) {
for (int nu = 1; nu <= c->lMax; ++nu) for (int mu = -nu; mu <= nu; ++mu) {
#ifndef NDEBUG
size_t assertindex = qpms_trans_calculator_index_mnmunu(c,m,n,mu,nu);
#endif
assert(assertindex == desti*c->nelem + srci);
*(Adest + deststride * desti + srcstride * srci) =
qpms_trans_calculator_get_A_precalcbuf(c,m,n,mu,nu,
kdlj,r_ge_d,J,bessel_buf,legendre_buf);
*(Bdest + deststride * desti + srcstride * srci) =
qpms_trans_calculator_get_B_precalcbuf(c,m,n,mu,nu,
kdlj,r_ge_d,J,bessel_buf,legendre_buf);
++srci;
}
++desti;
srci = 0;
}
return 0;
}
}
complex double qpms_trans_calculator_get_A(const qpms_trans_calculator *c,
int m, int n, int mu, int nu, sph_t kdlj,
bool r_ge_d, qpms_bessel_t J) {
double leg[gsl_sf_legendre_array_n(n+nu)];
complex double bes[n+nu+1]; // maximum order is 2n for A coeffs, plus the zeroth.
return qpms_trans_calculator_get_A_buf(c,m,n,mu,nu,kdlj,r_ge_d,J,
bes,leg);
}
complex double qpms_trans_calculator_get_B(const qpms_trans_calculator *c,
int m, int n, int mu, int nu, sph_t kdlj,
bool r_ge_d, qpms_bessel_t J) {
double leg[gsl_sf_legendre_array_n(n+nu+1)];
complex double bes[n+nu+2]; // maximum order is 2n+1 for B coeffs, plus the zeroth.
return qpms_trans_calculator_get_B_buf(c,m,n,mu,nu,kdlj,r_ge_d,J,
bes,leg);
}
int qpms_trans_calculator_get_AB_p(const qpms_trans_calculator *c,
complex double *Adest, complex double *Bdest,
int m, int n, int mu, int nu, sph_t kdlj,
bool r_ge_d, qpms_bessel_t J) {
double leg[gsl_sf_legendre_array_n(2*c->lMax+1)];
complex double bes[2*c->lMax+2]; // maximum order is 2n+1 for B coeffs, plus the zeroth.
return qpms_trans_calculator_get_AB_buf_p(c,Adest, Bdest,m,n,mu,nu,kdlj,r_ge_d,J,
bes,leg);
}
int qpms_trans_calculator_get_AB_arrays(const qpms_trans_calculator *c,
complex double *Adest, complex double *Bdest,
size_t deststride, size_t srcstride,
sph_t kdlj, bool r_ge_d, qpms_bessel_t J) {
double leg[gsl_sf_legendre_array_n(c->lMax+c->lMax+1)];
complex double bes[2*c->lMax+2]; // maximum order is 2n+1 for B coeffs, plus the zeroth.
return qpms_trans_calculator_get_AB_arrays_buf(c,
Adest, Bdest, deststride, srcstride,
kdlj, r_ge_d, J,
bes, leg);
}
// Convenience functions using VSWF base specs
qpms_errno_t qpms_trans_calculator_get_trans_array(const qpms_trans_calculator *c,
complex double *target,
/// Must be destspec->lMax <= c-> lMax && destspec->norm == c->norm.
const qpms_vswf_set_spec_t *destspec, size_t deststride,
/// Must be srcspec->lMax <= c-> lMax && srcspec->norm == c->norm.
const qpms_vswf_set_spec_t *srcspec, size_t srcstride,
sph_t kdlj, bool r_ge_d, qpms_bessel_t J)
{
TROPS_ONLY_AB_SYMMETRIC_NORMS_IMPLEMENTED(c->normalisation);
assert(c->normalisation == destspec->norm && c->normalisation == srcspec->norm);
assert(c->lMax >= destspec->lMax && c->lMax >= srcspec->lMax);
assert(destspec->lMax_L < 0 && srcspec->lMax_L < 0);
complex double A[c->nelem][c->nelem];
complex double B[c->nelem][c->nelem];
qpms_errno_t retval = qpms_trans_calculator_get_AB_arrays(c,
A[0], B[0], c->nelem, 1,
kdlj, r_ge_d, J);
for (size_t desti = 0; desti < destspec->n; ++desti) {
qpms_y_t desty; qpms_vswf_type_t destt;
if(QPMS_SUCCESS != qpms_uvswfi2ty(destspec->ilist[desti], &destt, &desty))
qpms_pr_error_at_flf(__FILE__,__LINE__,__func__,
"Invalid u. vswf index %llx.", destspec->ilist[desti]);
for (size_t srci = 0; srci < srcspec->n; ++srci){
qpms_y_t srcy; qpms_vswf_type_t srct;
if(QPMS_SUCCESS != qpms_uvswfi2ty(srcspec->ilist[srci], &srct, &srcy))
qpms_pr_error_at_flf(__FILE__,__LINE__,__func__,
"Invalid u. vswf index %llx.", srcspec->ilist[srci]);
target[srci * srcstride + desti * deststride]
= (srct == destt) ? A[desty][srcy] : B[desty][srcy];
}
}
return retval;
}
qpms_errno_t qpms_trans_calculator_get_trans_array_lc3p(
const qpms_trans_calculator *c,
complex double *target,
/// Must be destspec->lMax <= c-> lMax && destspec->norm == c->norm.
const qpms_vswf_set_spec_t *destspec, size_t deststride,
/// Must be srcspec->lMax <= c-> lMax && srcspec->norm == c->norm.
const qpms_vswf_set_spec_t *srcspec, size_t srcstride,
double k, cart3_t destpos, cart3_t srcpos, qpms_bessel_t J
/// Workspace has to be at least 2 * c->neleme**2 long
)
{
sph_t kdlj = cart2sph(cart3_substract(destpos, srcpos));
kdlj.r *= k;
return qpms_trans_calculator_get_trans_array(c, target,
destspec, deststride, srcspec, srcstride, kdlj,
false, J);
}
#ifdef LATTICESUMS31
int qpms_trans_calculator_get_AB_arrays_e31z_both_points_and_shift(const qpms_trans_calculator *c,
complex double * const Adest, double * const Aerr,
complex double * const Bdest, double * const Berr,
const ptrdiff_t deststride, const ptrdiff_t srcstride,
/* qpms_bessel_t J*/ // assume QPMS_HANKEL_PLUS
const double eta, const double k, const double unitcell_area,
const size_t nRpoints, const cart2_t *Rpoints, // n.b. can't contain 0; TODO automatic recognition and skip
const size_t nKpoints, const cart2_t *Kpoints,
const double beta,//DIFF21
const double particle_shift//DIFF21
)
{
const qpms_y_t nelem2_sc = qpms_lMax2nelem_sc(c->e3c->lMax);
//const qpms_y_t nelem = qpms_lMax2nelem(c->lMax);
const bool doerr = Aerr || Berr;
const bool do_sigma0 = (particle_shift == 0)//DIFF21((particle_shift.x == 0) && (particle_shift.y == 0)); // FIXME ignoring the case where particle_shift equals to lattice vector
complex double *sigmas_short = malloc(sizeof(complex double)*nelem2_sc);
complex double *sigmas_long = malloc(sizeof(complex double)*nelem2_sc);
complex double *sigmas_total = malloc(sizeof(complex double)*nelem2_sc);
double *serr_short, *serr_long, *serr_total;
if(doerr) {
serr_short = malloc(sizeof(double)*nelem2_sc);
serr_long = malloc(sizeof(double)*nelem2_sc);
serr_total = malloc(sizeof(double)*nelem2_sc);
} else serr_short = serr_long = serr_total = NULL;
int retval;
retval = ewald31z_sigma_long_points_and_shift(sigmas_long, serr_long, //DIFF21
c->e3c, eta, k, unitcell_area, nKpoints, Kpoints, beta, particle_shift);
if (retval) abort();
retval = ewald31z_sigma_short_points_and_shift(sigmas_short, serr_short, //DIFF21
c->e3c, eta, k, nRpoints, Rpoints, beta, particle_shift);
if (retval) abort();
for(qpms_y_t y = 0; y < nelem2_sc; ++y)
sigmas_total[y] = sigmas_short[y] + sigmas_long[y];
if (doerr) for(qpms_y_t y = 0; y < nelem2_sc; ++y)
serr_total[y] = serr_short[y] + serr_long[y];
complex double sigma0 = 0; double sigma0_err = 0;
if (do_sigma0) {
retval = ewald31z_sigma0(&sigma0, &sigma0_err, c->e3c, eta, k);//DIFF21
if(retval) abort();
const qpms_l_t y = qpms_mn2y_sc(0,0);
sigmas_total[y] += sigma0;
if(doerr) serr_total[y] += sigma0_err;
}
{
ptrdiff_t desti = 0, srci = 0;
for (qpms_l_t n = 1; n <= c->lMax; ++n) for (qpms_m_t m = -n; m <= n; ++m) {
for (qpms_l_t nu = 1; nu <= c->lMax; ++nu) for (qpms_m_t mu = -nu; mu <= nu; ++mu){
const size_t i = qpms_trans_calculator_index_mnmunu(c, m, n, mu, nu);
const size_t qmax = c->A_multipliers[i+1] - c->A_multipliers[i] - 1;
complex double Asum, Asumc; ckahaninit(&Asum, &Asumc);
double Asumerr, Asumerrc; if(Aerr) kahaninit(&Asumerr, &Asumerrc);
const qpms_m_t mu_m = mu - m;
// TODO skip if ... (N.B. skip will be different for 31z and 32)
for(qpms_l_t q = 0; q <= qmax; ++q) {
const qpms_l_t p = n + nu - 2*q;
const qpms_y_t y_sc = qpms_mn2y_sc(mu_m, p);
const complex double multiplier = c->A_multipliers[i][q];
complex double sigma = sigmas_total[y_sc];
ckahanadd(&Asum, &Asumc, multiplier * sigma);
if (Aerr) kahanadd(&Asumerr, &Asumerrc, multiplier * serr_total[y_sc]);
}
*(Adest + deststride * desti + srcstride * srci) = Asum;
if (Aerr) *(Aerr + deststride * desti + srcstride * srci) = Asumerr;
// TODO skip if ...
complex double Bsum, Bsumc; ckahaninit(&Bsum, &Bsumc);
double Bsumerr, Bsumerrc; if(Berr) kahaninit(&Bsumerr, &Bsumerrc);
for(qpms_l_t q = 0; q <= qmax; ++q) {
const qpms_l_t p_ = n + nu - 2*q + 1;
const qpms_y_t y_sc = qpms_mn2y_sc(mu_m, p_);
const complex double multiplier = c->B_multipliers[i][q-BQ_OFFSET];
complex double sigma = sigmas_total[y_sc];
ckahanadd(&Bsum, &Bsumc, multiplier * sigma);
if (Berr) kahanadd(&Bsumerr, &Bsumerrc, multiplier * serr_total[y_sc]);
}
*(Bdest + deststride * desti + srcstride * srci) = Bsum;
if (Berr) *(Berr + deststride * desti + srcstride * srci) = Bsumerr;
++srci;
}
++desti;
srci = 0;
}
}
free(sigmas_short);
free(sigmas_long);
free(sigmas_total);
if(doerr) {
free(serr_short);
free(serr_long);
free(serr_total);
}
return 0;
}
#endif // LATTICESUMS_31
#ifdef LATTICESUMS32
#if 0 // Legacy code, to be removed
int qpms_trans_calculator_get_AB_arrays_e32_both_points_and_shift(const qpms_trans_calculator *c,
complex double * const Adest, double * const Aerr,
complex double * const Bdest, double * const Berr,
const ptrdiff_t deststride, const ptrdiff_t srcstride,
/* qpms_bessel_t J*/ // assume QPMS_HANKEL_PLUS
const double eta, const double k, const double unitcell_area,
const size_t nRpoints, const cart2_t *Rpoints, // n.b. can't contain 0; TODO automatic recognition and skip
const size_t nKpoints, const cart2_t *Kpoints,
const cart2_t beta,
const cart2_t particle_shift
)
{
const qpms_y_t nelem2_sc = qpms_lMax2nelem_sc(c->e3c->lMax);
//const qpms_y_t nelem = qpms_lMax2nelem(c->lMax);
const bool doerr = Aerr || Berr;
const bool do_sigma0 = ((particle_shift.x == 0) && (particle_shift.y == 0)); // FIXME ignoring the case where particle_shift equals to lattice vector
complex double *sigmas_short = malloc(sizeof(complex double)*nelem2_sc);
complex double *sigmas_long = malloc(sizeof(complex double)*nelem2_sc);
complex double *sigmas_total = malloc(sizeof(complex double)*nelem2_sc);
double *serr_short, *serr_long, *serr_total;
if(doerr) {
serr_short = malloc(sizeof(double)*nelem2_sc);
serr_long = malloc(sizeof(double)*nelem2_sc);
serr_total = malloc(sizeof(double)*nelem2_sc);
} else serr_short = serr_long = serr_total = NULL;
int retval;
retval = ewald32_sigma_long_points_and_shift(sigmas_long, serr_long,
c->e3c, eta, k, unitcell_area, nKpoints, Kpoints, beta, particle_shift);
if (retval) abort();
retval = ewald32_sigma_short_points_and_shift(sigmas_short, serr_short,
c->e3c, eta, k, nRpoints, Rpoints, beta, particle_shift);
if (retval) abort();
for(qpms_y_t y = 0; y < nelem2_sc; ++y)
sigmas_total[y] = sigmas_short[y] + sigmas_long[y];
if (doerr) for(qpms_y_t y = 0; y < nelem2_sc; ++y)
serr_total[y] = serr_short[y] + serr_long[y];
complex double sigma0 = 0; double sigma0_err = 0;
if (do_sigma0) {
retval = ewald32_sigma0(&sigma0, &sigma0_err, c->e3c, eta, k);
if(retval) abort();
const qpms_l_t y = qpms_mn2y_sc(0,0);
sigmas_total[y] += sigma0;
if(doerr) serr_total[y] += sigma0_err;
}
switch(qpms_normalisation_t_normonly(c->normalisation)) {
case QPMS_NORMALISATION_TAYLOR:
case QPMS_NORMALISATION_POWER:
case QPMS_NORMALISATION_NONE:
{
ptrdiff_t desti = 0, srci = 0;
for (qpms_l_t n = 1; n <= c->lMax; ++n) for (qpms_m_t m = -n; m <= n; ++m) {
for (qpms_l_t nu = 1; nu <= c->lMax; ++nu) for (qpms_m_t mu = -nu; mu <= nu; ++mu){
const size_t i = qpms_trans_calculator_index_mnmunu(c, m, n, mu, nu);
const size_t qmax = c->A_multipliers[i+1] - c->A_multipliers[i] - 1;
complex double Asum, Asumc; ckahaninit(&Asum, &Asumc);
double Asumerr, Asumerrc; if(Aerr) kahaninit(&Asumerr, &Asumerrc);
const qpms_m_t mu_m = mu - m;
// TODO skip if ...
for(qpms_l_t q = 0; q <= qmax; ++q) {
const qpms_l_t p = n + nu - 2*q;
const qpms_y_t y_sc = qpms_mn2y_sc(mu_m, p);
const complex double multiplier = c->A_multipliers[i][q];
complex double sigma = sigmas_total[y_sc];
ckahanadd(&Asum, &Asumc, multiplier * sigma);
if (Aerr) kahanadd(&Asumerr, &Asumerrc, multiplier * serr_total[y_sc]);
}
*(Adest + deststride * desti + srcstride * srci) = Asum;
if (Aerr) *(Aerr + deststride * desti + srcstride * srci) = Asumerr;
// TODO skip if ...
complex double Bsum, Bsumc; ckahaninit(&Bsum, &Bsumc);
double Bsumerr, Bsumerrc; if(Berr) kahaninit(&Bsumerr, &Bsumerrc);
for(qpms_l_t q = 0; q <= qmax; ++q) {
const qpms_l_t p_ = n + nu - 2*q + 1;
const qpms_y_t y_sc = qpms_mn2y_sc(mu_m, p_);
const complex double multiplier = c->B_multipliers[i][q-BQ_OFFSET];
complex double sigma = sigmas_total[y_sc];
ckahanadd(&Bsum, &Bsumc, multiplier * sigma);
if (Berr) kahanadd(&Bsumerr, &Bsumerrc, multiplier * serr_total[y_sc]);
}
*(Bdest + deststride * desti + srcstride * srci) = Bsum;
if (Berr) *(Berr + deststride * desti + srcstride * srci) = Bsumerr;
++srci;
}
++desti;
srci = 0;
}
}
break;
default:
abort();
}
free(sigmas_short);
free(sigmas_long);
free(sigmas_total);
if(doerr) {
free(serr_short);
free(serr_long);
free(serr_total);
}
return 0;
}
#endif //0
// N.B. alternative point generation strategy toggled by macro GEN_RSHIFTEDPOINTS
// and GEN_KSHIFTEDPOINTS.
// The results should be the same. The performance can slightly differ (especially
// if some optimizations in the point generators are implemented.)
int qpms_trans_calculator_get_AB_arrays_e32(const qpms_trans_calculator *c,
complex double * const Adest, double * const Aerr,
complex double * const Bdest, double * const Berr,
const ptrdiff_t deststride, const ptrdiff_t srcstride,
/* qpms_bessel_t J*/ // assume QPMS_HANKEL_PLUS
const double eta, const double k,
const cart2_t b1, const cart2_t b2,
const cart2_t beta,
const cart2_t particle_shift,
double maxR, double maxK
)
{
const qpms_y_t nelem2_sc = qpms_lMax2nelem_sc(c->e3c->lMax);
//const qpms_y_t nelem = qpms_lMax2nelem(c->lMax);
const bool doerr = Aerr || Berr;
const bool do_sigma0 = ((particle_shift.x == 0) && (particle_shift.y == 0)); // FIXME ignoring the case where particle_shift equals to lattice vector
complex double *sigmas_short = malloc(sizeof(complex double)*nelem2_sc);
complex double *sigmas_long = malloc(sizeof(complex double)*nelem2_sc);
complex double *sigmas_total = malloc(sizeof(complex double)*nelem2_sc);
double *serr_short, *serr_long, *serr_total;
if(doerr) {
serr_short = malloc(sizeof(double)*nelem2_sc);
serr_long = malloc(sizeof(double)*nelem2_sc);
serr_total = malloc(sizeof(double)*nelem2_sc);
} else serr_short = serr_long = serr_total = NULL;
const double unitcell_area = l2d_unitcell_area(b1, b2);
cart2_t rb1, rb2; // reciprocal basis
if (QPMS_SUCCESS != l2d_reciprocalBasis2pi(b1, b2, &rb1, &rb2)) abort();
PGen Rgen = PGen_xyWeb_new(b1, b2, BASIS_RTOL,
#ifdef GEN_RSHIFTEDPOINTS
cart2_scale(-1 /*CHECKSIGN*/, particle_shift),
#else
CART2_ZERO,
#endif
0, !do_sigma0, maxR, false);
PGen Kgen = PGen_xyWeb_new(rb1, rb2, BASIS_RTOL,
#ifdef GEN_KSHIFTEDPOINTS
beta,
#else
CART2_ZERO,
#endif
0, true, maxK, false);
int retval;
//retval = ewald32_sigma_long_points_and_shift(sigmas_long, serr_long,
// c->e3c, eta, k, unitcell_area, nKpoints, Kpoints, beta, particle_shift);
retval = ewald3_sigma_long(sigmas_long, serr_long, c->e3c, eta, k,
unitcell_area, LAT_2D_IN_3D_XYONLY, &Kgen,
#ifdef GEN_KSHIFTEDPOINTS
true,
#else
false,
#endif
cart22cart3xy(beta), cart22cart3xy(particle_shift));
if (retval) abort();
//retval = ewald32_sigma_short_points_and_shift(sigmas_short, serr_short,
// c->e3c, eta, k, nRpoints, Rpoints, beta, particle_shift);
retval = ewald3_sigma_short(sigmas_short, serr_short, c->e3c, eta, k,
LAT_2D_IN_3D_XYONLY, &Rgen,
#ifdef GEN_RSHIFTEDPOINTS
true,
#else
false,
#endif
cart22cart3xy(beta), cart22cart3xy(particle_shift));
if (retval) abort();
for(qpms_y_t y = 0; y < nelem2_sc; ++y)
sigmas_total[y] = sigmas_short[y] + sigmas_long[y];
if (doerr) for(qpms_y_t y = 0; y < nelem2_sc; ++y)
serr_total[y] = serr_short[y] + serr_long[y];
complex double sigma0 = 0; double sigma0_err = 0;
if (do_sigma0) {
retval = ewald3_sigma0(&sigma0, &sigma0_err, c->e3c, eta, k);
if(retval) abort();
const qpms_l_t y = qpms_mn2y_sc(0,0);
sigmas_total[y] += sigma0;
if(doerr) serr_total[y] += sigma0_err;
}
{
ptrdiff_t desti = 0, srci = 0;
for (qpms_l_t n = 1; n <= c->lMax; ++n) for (qpms_m_t m = -n; m <= n; ++m) {
for (qpms_l_t nu = 1; nu <= c->lMax; ++nu) for (qpms_m_t mu = -nu; mu <= nu; ++mu){
const size_t i = qpms_trans_calculator_index_mnmunu(c, m, n, mu, nu);
const size_t qmax = c->A_multipliers[i+1] - c->A_multipliers[i] - 1;
complex double Asum, Asumc; ckahaninit(&Asum, &Asumc);
double Asumerr, Asumerrc; if(Aerr) kahaninit(&Asumerr, &Asumerrc);
const qpms_m_t mu_m = mu - m;
// TODO skip if ...
for(qpms_l_t q = 0; q <= qmax; ++q) {
const qpms_l_t p = n + nu - 2*q;
const qpms_y_t y_sc = qpms_mn2y_sc(mu_m, p);
const complex double multiplier = c->A_multipliers[i][q];
complex double sigma = sigmas_total[y_sc];
ckahanadd(&Asum, &Asumc, multiplier * sigma);
if (Aerr) kahanadd(&Asumerr, &Asumerrc, multiplier * serr_total[y_sc]);
}
*(Adest + deststride * desti + srcstride * srci) = Asum;
if (Aerr) *(Aerr + deststride * desti + srcstride * srci) = Asumerr;
// TODO skip if ...
complex double Bsum, Bsumc; ckahaninit(&Bsum, &Bsumc);
double Bsumerr, Bsumerrc; if(Berr) kahaninit(&Bsumerr, &Bsumerrc);
for(qpms_l_t q = 0; q <= qmax; ++q) {
const qpms_l_t p_ = n + nu - 2*q + 1;
const qpms_y_t y_sc = qpms_mn2y_sc(mu_m, p_);
const complex double multiplier = c->B_multipliers[i][q-BQ_OFFSET];
complex double sigma = sigmas_total[y_sc];
ckahanadd(&Bsum, &Bsumc, multiplier * sigma);
if (Berr) kahanadd(&Bsumerr, &Bsumerrc, multiplier * serr_total[y_sc]);
}
*(Bdest + deststride * desti + srcstride * srci) = Bsum;
if (Berr) *(Berr + deststride * desti + srcstride * srci) = Bsumerr;
++srci;
}
++desti;
srci = 0;
}
}
free(sigmas_short);
free(sigmas_long);
free(sigmas_total);
if(doerr) {
free(serr_short);
free(serr_long);
free(serr_total);
}
return 0;
}
#if 0
int qpms_trans_calculator_e32_long_points_and_shift(const qpms_trans_calculator *c,
complex double *Adest_long, double *Aerr_long,
complex double *Bdest_long, double *Berr_long,
double eta, double k, double unitcell_area,
size_t npoints, const cart2_t *Kpoints,
cart2_t beta,
cart2_t particle_shift
)
{
}
int qpms_trans_calculator_e32_short_points_and_shift(const qpms_trans_calculator *c,
complex double *Adest_short, double *Aerr_short,
complex double *Bdest_short, double *Berr_short,
double eta, double k,
size_t npoints, const cart2_t *Rpoints,
cart2_t beta,
cart2_t particle_shift
};
#endif // 0
#endif // LATTICESUMS32
#ifdef LATTICESUMS_OLD
int qpms_trans_calculator_get_shortrange_AB_arrays_buf(const qpms_trans_calculator *c,
complex double *Adest, complex double *Bdest,
size_t deststride, size_t srcstride,
sph_t kdlj, qpms_bessel_t J,
qpms_l_t lrcutoff, unsigned kappa, double cc, // regularisation params
complex double *bessel_buf, double *legendre_buf
) {
assert(J == QPMS_HANKEL_PLUS); // support only J == 3 for now
if (0 == kdlj.r && J != QPMS_BESSEL_REGULAR) {
for (size_t i = 0; i < c->nelem; ++i)
for (size_t j = 0; j < c->nelem; ++j) {
*(Adest + i*srcstride + j*deststride) = NAN+I*NAN;
*(Bdest + i*srcstride + j*deststride) = NAN+I*NAN;
}
// TODO warn? different return value?
return 0;
}
{
double costheta = cos(kdlj.theta);
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,2*c->lMax+1,
costheta,-1,legendre_buf)) abort();
// if (qpms_sph_bessel_fill(J, 2*c->lMax+1, kdlj.r, bessel_buf)) abort(); // original
hankelparts_fill(NULL, bessel_buf, 2*c->lMax+1, lrcutoff, c->hct, kappa, cc, kdlj.r);
size_t desti = 0, srci = 0;
for (int n = 1; n <= c->lMax; ++n) for (int m = -n; m <= n; ++m) {
for (int nu = 1; nu <= c->lMax; ++nu) for (int mu = -nu; mu <= nu; ++mu) {
size_t assertindex = qpms_trans_calculator_index_mnmunu(c,m,n,mu,nu);
assert(assertindex == desti*c->nelem + srci);
*(Adest + deststride * desti + srcstride * srci) =
qpms_trans_calculator_get_A_precalcbuf(c,m,n,mu,nu,
kdlj,false,J,bessel_buf,legendre_buf);
*(Bdest + deststride * desti + srcstride * srci) =
qpms_trans_calculator_get_B_precalcbuf(c,m,n,mu,nu,
kdlj,false,J,bessel_buf,legendre_buf);
++srci;
}
++desti;
srci = 0;
}
return 0;
}
}
int qpms_trans_calculator_get_shortrange_AB_buf_p(const qpms_trans_calculator *c,
complex double *Adest, complex double *Bdest,
int m, int n, int mu, int nu, sph_t kdlj,
qpms_bessel_t J,
qpms_l_t lrcutoff, unsigned kappa, double cc, // regularisation params
complex double *bessel_buf, double *legendre_buf) {
assert(J == QPMS_HANKEL_PLUS); // support only J == 3 for now
if (0 == kdlj.r && J != QPMS_BESSEL_REGULAR) {
*Adest = NAN+I*NAN;
*Bdest = NAN+I*NAN;
// TODO warn? different return value?
return 0;
}
{
double costheta = cos(kdlj.theta);
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu+1,
costheta,-1,legendre_buf)) abort();
//if (qpms_sph_bessel_fill(J, n+nu+1, kdlj.r, bessel_buf)) abort(); // original
hankelparts_fill(NULL, bessel_buf, 2*c->lMax+1, lrcutoff, c->hct, kappa, cc, kdlj.r);
*Adest = qpms_trans_calculator_get_A_precalcbuf(c,m,n,mu,nu,
kdlj,false,J,bessel_buf,legendre_buf);
*Bdest = qpms_trans_calculator_get_B_precalcbuf(c,m,n,mu,nu,
kdlj,false,J,bessel_buf,legendre_buf);
return 0;
}
}
// Short-range parts of the translation coefficients
int qpms_trans_calculator_get_shortrange_AB_p(const qpms_trans_calculator *c,
complex double *Adest, complex double *Bdest,
qpms_m_t m, qpms_l_t n, qpms_m_t mu, qpms_l_t nu, sph_t kdlj,
qpms_bessel_t J /* Only J=3 valid for now */,
qpms_l_t lrcutoff, unsigned kappa, double cc) {
double leg[gsl_sf_legendre_array_n(2*c->lMax+1)];
complex double bes[2*c->lMax+2]; // maximum order is 2n+1 for B coeffs, plus the zeroth.
return qpms_trans_calculator_get_shortrange_AB_buf_p(c,Adest, Bdest,m,n,mu,nu,kdlj,J,
lrcutoff, kappa, cc,
bes, leg);
}
int qpms_trans_calculator_get_shortrange_AB_arrays(const qpms_trans_calculator *c,
complex double *Adest, complex double *Bdest,
size_t deststride, size_t srcstride,
sph_t kdlj, qpms_bessel_t J /* Only J=3 valid for now */,
qpms_l_t lrcutoff, unsigned kappa, double cc) {
double leg[gsl_sf_legendre_array_n(c->lMax+c->lMax+1)];
complex double bes[2*c->lMax+2]; // maximum order is 2n+1 for B coeffs, plus the zeroth.
return qpms_trans_calculator_get_shortrange_AB_arrays_buf(c,
Adest, Bdest, deststride, srcstride,
kdlj, J,
lrcutoff, kappa, cc,
bes, leg);
}
// Long-range parts
static inline complex double qpms_trans_calculator_get_2DFT_longrange_A_precalcbuf(const qpms_trans_calculator *c,
int m, int n, int mu, int nu, sph_t k_sph /* theta must be M_PI_2 */,
qpms_bessel_t J /* must be 3 for now */,
const complex double *lrhankel_recparts_buf) {
assert(J == QPMS_HANKEL_PLUS);
//assert(k_sph.theta == M_PI_2); CHECK IN ADVANCE INSTEAD
//assert(k_sph.r > 0);
size_t i = qpms_trans_calculator_index_mnmunu(c, m, n, mu, nu);
size_t qmax = c->A_multipliers[i+1] - c->A_multipliers[i] - 1;
assert(qmax == gaunt_q_max(-m,n,mu,nu));
complex double sum, kahanc;
ckahaninit(&sum, &kahanc);
for(size_t q = 0; q <= qmax; ++q) {
int p = n+nu-2*q;
double Pp = c->legendre0[gsl_sf_legendre_array_index(p, abs(mu-m))];
complex double zp = trindex_cd(lrhankel_recparts_buf, p)[abs(mu-m)]; // orig: bessel_buf[p];
if (mu - m < 0) zp *= min1pow(mu-m); // DLMF 10.4.1
complex double multiplier = c->A_multipliers[i][q];
ckahanadd(&sum, &kahanc, Pp * zp * multiplier);
}
complex double eimf = cexp(I*(mu-m)*k_sph.phi);
return sum * eimf * ipow(mu-m);
}
static inline complex double qpms_trans_calculator_get_2DFT_longrange_B_precalcbuf(const qpms_trans_calculator *c,
int m, int n, int mu, int nu, sph_t k_sph /* theta must be M_PI_2 */,
qpms_bessel_t J /* must be 3 for now */,
const complex double *lrhankel_recparts_buf) {
assert(J == QPMS_HANKEL_PLUS);
size_t i = qpms_trans_calculator_index_mnmunu(c, m, n, mu, nu);
size_t qmax = c->B_multipliers[i+1] - c->B_multipliers[i] - (1 - BQ_OFFSET);
assert(qmax == gauntB_Q_max(-m,n,mu,nu));
complex double sum, kahanc;
ckahaninit(&sum, &kahanc);
for(int q = BQ_OFFSET; q <= qmax; ++q) {
int p = n+nu-2*q;
double Pp_ = c->legendre0[gsl_sf_legendre_array_index(p+1, abs(mu-m))];
complex double zp_ = trindex_cd(lrhankel_recparts_buf, p+1)[abs(mu-m)]; // orig: bessel_buf[p+1];
if (mu - m < 0) zp_ *= min1pow(mu-m); // DLMF 10.4.1
complex double multiplier = c->B_multipliers[i][q-BQ_OFFSET];
ckahanadd(&sum, &kahanc, Pp_ * zp_ * multiplier);
}
complex double eimf = cexp(I*(mu-m)*k_sph.phi);
return sum * eimf * ipow(mu-m);
}
int qpms_trans_calculator_get_2DFT_longrange_AB_buf_p(const qpms_trans_calculator *c,
complex double *Adest, complex double *Bdest,
int m, int n, int mu, int nu, sph_t k_sph,
qpms_bessel_t J,
qpms_l_t lrk_cutoff, unsigned kappa, double cv, double k0,
complex double *lrhankel_recparts_buf) {
assert (J == QPMS_HANKEL_PLUS);
assert(k_sph.theta == M_PI_2);
{
//double costheta = cos(kdlj.theta);
//if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu+1,
// costheta,-1,legendre_buf)) abort();
//if (qpms_sph_bessel_fill(J, n+nu+1, kdlj.r, bessel_buf)) abort();
lrhankel_recpart_fill(lrhankel_recparts_buf, 2*c->lMax+1 /* TODO n+nu+1 might be enough */,
lrk_cutoff, c->hct, kappa, cv, k0, k_sph.r);
*Adest = qpms_trans_calculator_get_2DFT_longrange_A_precalcbuf(c,m,n,mu,nu,
k_sph,J,lrhankel_recparts_buf);
*Bdest = qpms_trans_calculator_get_2DFT_longrange_B_precalcbuf(c,m,n,mu,nu,
k_sph,J,lrhankel_recparts_buf);
return 0;
}
}
// Fourier transforms of the long-range parts of the translation coefficients
int qpms_trans_calculator_get_2DFT_longrange_AB_p(const qpms_trans_calculator *c,
complex double *Adest, complex double *Bdest,
qpms_m_t m, qpms_l_t n, qpms_m_t mu, qpms_l_t nu, sph_t k_sph,
qpms_bessel_t J /* Only J=3 valid for now */,
qpms_l_t lrcutoff, unsigned kappa, double cv, double k0) {
int maxp = 2*c->lMax+1; // TODO this may not be needed here, n+nu+1 could be enough instead
complex double lrhankel_recpart[maxp * (maxp+1) / 2];
return qpms_trans_calculator_get_2DFT_longrange_AB_buf_p(c, Adest, Bdest,m,n,mu,nu,k_sph,
J, lrcutoff, kappa, cv, k0, lrhankel_recpart);
}
int qpms_trans_calculator_get_2DFT_longrange_AB_arrays_buf(const qpms_trans_calculator *c,
complex double *Adest, complex double *Bdest,
size_t deststride, size_t srcstride,
sph_t k_sph, qpms_bessel_t J /* must be 3 for now */,
qpms_l_t lrk_cutoff, unsigned kappa, double cv, double k0,
complex double *lrhankel_recparts_buf) {
assert(J == QPMS_HANKEL_PLUS);
assert(k_sph.theta == M_PI_2);
#if 0
if (0 == kdlj.r && J != QPMS_BESSEL_REGULAR) {
for (size_t i = 0; i < c->nelem; ++i)
for (size_t j = 0; j < c->nelem; ++j) {
*(Adest + i*srcstride + j*deststride) = NAN+I*NAN;
*(Bdest + i*srcstride + j*deststride) = NAN+I*NAN;
}
// TODO warn? different return value?
return 0;
}
#endif
{
lrhankel_recpart_fill(lrhankel_recparts_buf, 2*c->lMax+1,
lrk_cutoff, c->hct, kappa, cv, k0, k_sph.r);
// if (qpms_sph_bessel_fill(J, 2*c->lMax+1, kdlj.r, bessel_buf)) abort();
size_t desti = 0, srci = 0;
for (int n = 1; n <= c->lMax; ++n) for (int m = -n; m <= n; ++m) {
for (int nu = 1; nu <= c->lMax; ++nu) for (int mu = -nu; mu <= nu; ++mu) {
size_t assertindex = qpms_trans_calculator_index_mnmunu(c,m,n,mu,nu);
assert(assertindex == desti*c->nelem + srci);
*(Adest + deststride * desti + srcstride * srci) =
qpms_trans_calculator_get_2DFT_longrange_A_precalcbuf(c,m,n,mu,nu,
k_sph,J,lrhankel_recparts_buf);
*(Bdest + deststride * desti + srcstride * srci) =
qpms_trans_calculator_get_2DFT_longrange_B_precalcbuf(c,m,n,mu,nu,
k_sph,J,lrhankel_recparts_buf);
++srci;
}
++desti;
srci = 0;
}
return 0;
}
}
// FIXME i get stack smashing error inside the following function if compiled with optimizations
int qpms_trans_calculator_get_2DFT_longrange_AB_arrays(const qpms_trans_calculator *c,
complex double *Adest, complex double *Bdest,
size_t deststride, size_t srcstride,
sph_t k_sph, qpms_bessel_t J /* Only J=3 valid for now */,
qpms_l_t lrcutoff, unsigned kappa, double cv, double k0) {
int maxp = 2*c->lMax+1;
complex double lrhankel_recpart[maxp * (maxp+1) / 2];
return qpms_trans_calculator_get_2DFT_longrange_AB_arrays_buf(c,
Adest, Bdest, deststride, srcstride, k_sph, J,
lrcutoff, kappa, cv, k0,
lrhankel_recpart);
}
#endif // LATTICESUMS_OLD
complex double qpms_trans_calculator_get_A_ext(const qpms_trans_calculator *c,
int m, int n, int mu, int nu,
double kdlj_r, double kdlj_theta, double kdlj_phi,
int r_ge_d, int J) {
sph_t kdlj = {kdlj_r, kdlj_theta, kdlj_phi};
return qpms_trans_calculator_get_A(c,m,n,mu,nu,kdlj,r_ge_d,J);
}
complex double qpms_trans_calculator_get_B_ext(const qpms_trans_calculator *c,
int m, int n, int mu, int nu,
double kdlj_r, double kdlj_theta, double kdlj_phi,
int r_ge_d, int J) {
sph_t kdlj = {kdlj_r, kdlj_theta, kdlj_phi};
return qpms_trans_calculator_get_B(c,m,n,mu,nu,kdlj,r_ge_d,J);
}
int qpms_trans_calculator_get_AB_p_ext(const qpms_trans_calculator *c,
complex double *Adest, complex double *Bdest,
int m, int n, int mu, int nu,
double kdlj_r, double kdlj_theta, double kdlj_phi,
int r_ge_d, int J) {
sph_t kdlj = {kdlj_r, kdlj_theta, kdlj_phi};
return qpms_trans_calculator_get_AB_p(c,Adest,Bdest,m,n,mu,nu,kdlj,r_ge_d,J);
}
int qpms_trans_calculator_get_AB_arrays_ext(const qpms_trans_calculator *c,
complex double *Adest, complex double *Bdest,
size_t deststride, size_t srcstride,
double kdlj_r, double kdlj_theta, double kdlj_phi,
int r_ge_d, int J) {
sph_t kdlj = {kdlj_r, kdlj_theta, kdlj_phi};
return qpms_trans_calculator_get_AB_arrays(c,Adest,Bdest,deststride,srcstride,
kdlj, r_ge_d, J);
}
#ifdef QPMS_COMPILE_PYTHON_EXTENSIONS
#include <string.h>
#ifdef QPMS_USE_OMP
#include <omp.h>
#endif
int qpms_cython_trans_calculator_get_AB_arrays_loop(
const qpms_trans_calculator *c, const qpms_bessel_t J, const int resnd,
const int daxis, const int saxis,
char *A_data, const npy_intp *A_shape, const npy_intp *A_strides,
char *B_data, const npy_intp *B_shape, const npy_intp *B_strides,
const char *r_data, const npy_intp *r_shape, const npy_intp *r_strides,
const char *theta_data, const npy_intp *theta_shape, const npy_intp *theta_strides,
const char *phi_data, const npy_intp *phi_shape, const npy_intp *phi_strides,
const char *r_ge_d_data, const npy_intp *r_ge_d_shape, const npy_intp *r_ge_d_strides){
assert(daxis != saxis);
assert(resnd >= 2);
int longest_axis = 0;
int longestshape = 1;
const npy_intp *resultshape = A_shape, *resultstrides = A_strides;
// TODO put some restrict's everywhere?
for (int ax = 0; ax < resnd; ++ax){
assert(A_shape[ax] == B_shape[ax]);
assert(A_strides[ax] == B_strides[ax]);
if (daxis == ax || saxis == ax) continue;
if (A_shape[ax] > longestshape) {
longest_axis = ax;
longestshape = 1;
}
}
const npy_intp longlen = resultshape[longest_axis];
npy_intp innerloop_shape[resnd];
for (int ax = 0; ax < resnd; ++ax) {
innerloop_shape[ax] = resultshape[ax];
}
/* longest axis will be iterated in the outer (parallelized) loop.
* Therefore, longest axis, together with saxis and daxis,
* will not be iterated in the inner loop:
*/
innerloop_shape[longest_axis] = 1;
innerloop_shape[daxis] = 1;
innerloop_shape[saxis] = 1;
// these are the 'strides' passed to the qpms_trans_calculator_get_AB_arrays_ext
// function, which expects 'const double *' strides, not 'char *' ones.
const npy_intp dstride = resultstrides[daxis] / sizeof(complex double);
const npy_intp sstride = resultstrides[saxis] / sizeof(complex double);
int errval = 0;
// TODO here start parallelisation
//#pragma omp parallel
{
npy_intp local_indices[resnd];
memset(local_indices, 0, sizeof(local_indices));
int errval_local = 0;
size_t longi;
//#pragma omp for
for(longi = 0; longi < longlen; ++longi) {
// this might be done also in the inverse order, but this is more
// 'c-contiguous' way of incrementing the indices
int ax = resnd - 1;
while(ax >= 0) {
/* calculate the correct index/pointer for each array used.
* This can be further optimized from O(resnd * total size of
* the result array) to O(total size of the result array), but
* fick that now
*/
const char *r_p = r_data + r_strides[longest_axis] * longi;
const char *theta_p = theta_data + theta_strides[longest_axis] * longi;
const char *phi_p = phi_data + phi_strides[longest_axis] * longi;
const char *r_ge_d_p = r_ge_d_data + r_ge_d_strides[longest_axis] * longi;
char *A_p = A_data + A_strides[longest_axis] * longi;
char *B_p = B_data + B_strides[longest_axis] * longi;
for(int i = 0; i < resnd; ++i) {
// following two lines are probably not needed, as innerloop_shape is there 1 anyway
// so if i == daxis, saxis, or longest_axis, local_indices[i] is zero.
if (i == longest_axis) continue;
if (daxis == i || saxis == i) continue;
r_p += r_strides[i] * local_indices[i];
theta_p += theta_strides[i] * local_indices[i];
phi_p += phi_strides[i] * local_indices[i];
A_p += A_strides[i] * local_indices[i];
B_p += B_strides[i] * local_indices[i];
}
// perform the actual task here
errval_local |= qpms_trans_calculator_get_AB_arrays_ext(c, (complex double *)A_p,
(complex double *)B_p,
dstride, sstride,
// FIXME change all the _ext function types to npy_... so that
// these casts are not needed
*((double *) r_p), *((double *) theta_p), *((double *)phi_p),
(int)(*((npy_bool *) r_ge_d_p)), J);
if (errval_local) abort();
// increment the last index 'digit' (ax is now resnd-1; we don't have do-while loop in python)
++local_indices[ax];
while(local_indices[ax] == innerloop_shape[ax] && ax >= 0) {
// overflow to the next digit but stop when reached below the last one
local_indices[ax] = 0;
//local_indices[--ax]++; // dekrementace indexu pod nulu a následná inkrementace poruší paměť FIXME
ax--;
if (ax >= 0) local_indices[ax]++;
}
if (ax >= 0) // did not overflow, get back to the lowest index
ax = resnd - 1;
}
}
errval |= errval_local;
}
// FIXME when parallelizing
// TODO Here end parallelisation
return errval;
}
#endif // QPMS_COMPILE_PYTHON_EXTENSIONS