2019-07-31 13:02:10 +03:00
#LyX 2.4 created this file. For more info see https://www.lyx.org/
2019-08-01 04:38:51 +03:00
\lyxformat 584
2019-07-31 13:02:10 +03:00
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\use_default_options true
\maintain_unincluded_children false
2019-08-01 11:15:13 +03:00
\language english
2019-07-31 13:02:10 +03:00
\language_package default
\inputencoding utf8
\fontencoding auto
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_roman_osf false
\font_sans_osf false
\font_typewriter_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\use_lineno 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tablestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Section
Symmetries
\begin_inset CommandInset label
LatexCommand label
name "sec:Symmetries"
\end_inset
\end_layout
\begin_layout Standard
If the system has nontrivial point group symmetries, group theory gives
additional understanding of the system properties, and can be used to reduce
the computational costs.
\end_layout
\begin_layout Standard
2019-08-06 10:16:53 +03:00
As an example, if the system has a
2019-07-31 13:02:10 +03:00
\begin_inset Formula $D_{2h}$
\end_inset
2019-08-06 10:16:53 +03:00
symmetry and the corresponding truncated
2019-07-31 13:02:10 +03:00
\begin_inset Formula $\left(I-T\trops\right)$
\end_inset
matrix has size
\begin_inset Formula $N\times N$
\end_inset
,
\begin_inset Note Note
status open
\begin_layout Plain Layout
nepoužívám
\begin_inset Formula $N$
\end_inset
už v jiném kontextu?
\end_layout
\end_inset
it can be block-diagonalized into eight blocks of size about
\begin_inset Formula $N/8\times N/8$
\end_inset
, each of which can be LU-factorised separately (this is due to the fact
that
\begin_inset Formula $D_{2h}$
\end_inset
has eight different one-dimensional irreducible representations).
This can reduce both memory and time requirements to solve the scattering
problem
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Multiple-scattering problem block form"
plural "false"
caps "false"
noprefix "false"
\end_inset
by a factor of 64.
\end_layout
\begin_layout Standard
In periodic systems (problems
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Multiple-scattering problem unit cell block form"
plural "false"
caps "false"
noprefix "false"
\end_inset
,
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:lattice mode equation"
plural "false"
caps "false"
noprefix "false"
\end_inset
) due to small number of particles per unit cell, the costliest part is
usually the evaluation of the lattice sums in the
\begin_inset Formula $W\left(\omega,\vect k\right)$
\end_inset
matrix, not the linear algebra.
However, the lattice modes can be searched for in each irrep separately,
and the irrep dimension gives a priori information about mode degeneracy.
\end_layout
\begin_layout Subsection
2019-08-01 06:48:10 +03:00
Excitation coefficients under point group operations
2019-07-31 13:02:10 +03:00
\end_layout
2019-08-01 04:38:51 +03:00
\begin_layout Standard
\begin_inset Note Note
status open
\begin_layout Plain Layout
TODO Zkontrolovat všechny vzorečky zde!!!
\end_layout
\end_inset
In order to use the point group symmetries, we first need to know how they
affect our basis functions, i.e.
the VSWFs.
\end_layout
\begin_layout Standard
Let
\begin_inset Formula $g$
\end_inset
2019-08-05 18:32:09 +03:00
be a member of the orthogonal group
\begin_inset Formula $\mathrm{O}(3)$
2019-08-01 04:38:51 +03:00
\end_inset
, i.e.
a 3D point rotation or reflection operation that transforms vectors in
\begin_inset Formula $\reals^{3}$
\end_inset
with an orthogonal matrix
\begin_inset Formula $R_{g}$
\end_inset
:
\begin_inset Formula
\[
\vect r\mapsto R_{g}\vect r.
\]
\end_inset
2019-08-05 18:32:09 +03:00
With
\begin_inset Formula $\groupop g$
\end_inset
we shall denote the action of
\begin_inset Formula $g$
\end_inset
on a field in real space.
For a scalar field
\begin_inset Formula $w$
\end_inset
we have
\begin_inset Formula $\left(\groupop gw\right)\left(\vect r\right)=w\left(R_{g}^{-1}\vect r\right)$
\end_inset
, whereas for a vector field
\begin_inset Formula $\vect w$
\end_inset
,
\begin_inset Formula $\left(\groupop g\vect w\right)\left(\vect r\right)=R_{g}\vect w\left(R_{g}^{-1}\vect r\right)$
\end_inset
.
\end_layout
\begin_layout Standard
2019-08-01 04:38:51 +03:00
Spherical harmonics
\begin_inset Formula $\ush lm$
\end_inset
2019-08-05 18:32:09 +03:00
, being a basis of the
2019-08-01 04:38:51 +03:00
\begin_inset Formula $l$
\end_inset
-dimensional representation of
2019-08-05 18:32:09 +03:00
\begin_inset Formula $\mathrm{O}(3)$
2019-08-01 04:38:51 +03:00
\end_inset
, transform as
\begin_inset CommandInset citation
LatexCommand cite
after "???"
key "dresselhaus_group_2008"
literal "false"
\end_inset
\begin_inset Formula
\[
2019-08-05 18:32:09 +03:00
\left(\groupop g\ush lm\right)\left(\uvec r\right)=\ush lm\left(R_{g}^{-1}\uvec r\right)=\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\ush l{m'}\left(\uvec r\right)
2019-08-01 04:38:51 +03:00
\]
\end_inset
where
\begin_inset Formula $D_{m,m'}^{l}\left(g\right)$
\end_inset
denotes the elements of the
\emph on
2019-08-05 18:32:09 +03:00
Wigner matrix
\begin_inset Note Note
status open
\begin_layout Plain Layout
TODO explicit formulation
\end_layout
\end_inset
2019-08-01 04:38:51 +03:00
\emph default
representing the operation
\begin_inset Formula $g$
\end_inset
.
2019-08-05 18:32:09 +03:00
From their definitions
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:vector spherical harmonics definition"
plural "false"
caps "false"
noprefix "false"
\end_inset
and the properties of the gradient operator under coordinate transforms,
vector spherical harmonics
2019-08-01 04:38:51 +03:00
\begin_inset Formula $\vsh 2lm,\vsh 3lm$
\end_inset
transform in the same way,
\begin_inset Formula
\begin{align*}
2019-08-05 18:32:09 +03:00
\left(\groupop g\vsh 2lm\right)\left(\uvec r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vsh 2l{m'}\left(\uvec r\right),\\
\left(\groupop g\vsh 3lm\right)\left(\uvec r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vsh 3l{m'}\left(\uvec r\right),
\end{align*}
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
\begin_inset Formula
\begin{align*}
\left(\groupop g\vsh 2lm\right)\left(\uvec r\right) & =R_{g}\vsh 2lm\left(R_{g}^{-1}\uvec r\right)=\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vsh 2l{m'}\left(\uvec r\right),\\
\left(\groupop g\vsh 3lm\right)\left(\uvec r\right) & =R_{g}\vsh 2lm\left(R_{g}^{-1}\uvec r\right)=\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vsh 3l{m'}\left(\uvec r\right),
2019-08-01 04:38:51 +03:00
\end{align*}
\end_inset
2019-08-05 18:32:09 +03:00
\end_layout
\end_inset
2019-08-01 04:38:51 +03:00
but the remaining set
\begin_inset Formula $\vsh 1lm$
\end_inset
transforms differently due to their pseudovector nature stemming from the
cross product in their definition:
\begin_inset Formula
\[
2019-08-05 18:32:09 +03:00
\left(\groupop g\vsh 1lm\right)\left(\uvec r\right)=\sum_{m'=-l}^{l}\widetilde{D_{m,m'}^{l}}\left(g\right)\vsh 1l{m'}\left(\uvec r\right),
2019-08-01 04:38:51 +03:00
\]
\end_inset
where
\begin_inset Formula $\widetilde{D_{m,m'}^{l}}\left(g\right)=D_{m,m'}^{l}\left(g\right)$
\end_inset
if
\begin_inset Formula $g$
\end_inset
2019-08-05 18:32:09 +03:00
is a proper rotation,
\begin_inset Formula $g\in\mathrm{SO(3)}$
\end_inset
, but for spatial inversion operation
2019-08-01 04:38:51 +03:00
\begin_inset Formula $i:\vect r\mapsto-\vect r$
\end_inset
we have
2019-08-05 18:32:09 +03:00
\begin_inset Formula $D_{m,m'}^{l}\left(i\right)=\left(-1\right)^{l}$
\end_inset
but
\begin_inset Formula $\widetilde{D_{m,m'}^{l}}\left(i\right)=\left(-1\right)^{l+1}$
2019-08-01 04:38:51 +03:00
\end_inset
.
The transformation behaviour of vector spherical harmonics directly propagates
to the spherical vector waves, cf.
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:VSWF regular"
plural "false"
caps "false"
noprefix "false"
\end_inset
,
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:VSWF outgoing"
plural "false"
caps "false"
noprefix "false"
\end_inset
:
\begin_inset Formula
\begin{align*}
2019-08-05 18:32:09 +03:00
\left(\groupop g\vswfouttlm 1lm\right)\left(\vect r\right) & =\sum_{m'=-l}^{l}\widetilde{D_{m,m'}^{l}}\left(g\right)\vswfouttlm 1l{m'}\left(\vect r\right),\\
\left(\groupop g\vswfouttlm 2lm\right)\left(\vect r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vswfouttlm 2l{m'}\left(\vect r\right),
2019-08-01 04:38:51 +03:00
\end{align*}
\end_inset
(and analogously for the regular waves
\begin_inset Formula $\vswfrtlm{\tau}lm$
\end_inset
).
\begin_inset Note Note
status open
\begin_layout Plain Layout
TODO víc obdivu.
\end_layout
\end_inset
For convenience, we introduce the symbol
\begin_inset Formula $D_{m,m'}^{\tau l}$
\end_inset
2019-08-05 18:32:09 +03:00
that describes the transformation of both (
2019-08-01 04:38:51 +03:00
\begin_inset Quotes eld
\end_inset
magnetic
\begin_inset Quotes erd
\end_inset
and
\begin_inset Quotes eld
\end_inset
electric
\begin_inset Quotes erd
\end_inset
2019-08-05 18:32:09 +03:00
) types of waves at once:
2019-08-01 04:38:51 +03:00
\begin_inset Formula
\[
2019-08-05 18:32:09 +03:00
\groupop g\vswfouttlm{\tau}lm\left(\vect r\right)=\sum_{m'=-l}^{l}D_{m,m'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(\vect r\right).
2019-08-01 04:38:51 +03:00
\]
\end_inset
Using these, we can express the VSWF expansion
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:E field expansion"
plural "false"
caps "false"
noprefix "false"
\end_inset
of the electric field around origin in a rotated/reflected system,
\begin_inset Formula
\[
2019-08-05 18:32:09 +03:00
\left(\groupop g\vect E\right)\left(\omega,\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\vect r\right)+\outcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\vect r\right)\right),
2019-08-01 04:38:51 +03:00
\]
\end_inset
which, together with the
\begin_inset Formula $T$
\end_inset
-matrix definition,
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:T-matrix definition"
plural "false"
caps "false"
noprefix "false"
\end_inset
can be used to obtain a
\begin_inset Formula $T$
\end_inset
-matrix of a rotated or mirror-reflected particle.
Let
\begin_inset Formula $T$
\end_inset
be the
\begin_inset Formula $T$
\end_inset
-matrix of an original particle; the
\begin_inset Formula $T$
\end_inset
-matrix of a particle physically transformed by operation
\begin_inset Formula $g\in O(3)$
\end_inset
is then
\begin_inset Note Note
status open
\begin_layout Plain Layout
check sides
\end_layout
\end_inset
\begin_inset Formula
\begin{equation}
T'_{\tau lm;\tau'l'm'}=\sum_{\mu=-l}^{l}\sum_{\mu'=-l'}^{l'}\left(D_{\mu,m}^{\tau l}\left(g\right)\right)^{*}T_{\tau l\mu;\tau'l'm'}D_{m',\mu'}^{\tau l}\left(g\right).\label{eq:T-matrix of a transformed particle}
\end{equation}
\end_inset
If the particle is symmetric (so that
\begin_inset Formula $g$
\end_inset
produces a particle indistinguishable from the original one), the
\begin_inset Formula $T$
\end_inset
-matrix must remain invariant under the transformation
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:T-matrix of a transformed particle"
plural "false"
caps "false"
noprefix "false"
\end_inset
,
\begin_inset Formula $T'_{\tau lm;\tau'l'm'}=T{}_{\tau lm;\tau'l'm'}$
\end_inset
.
Explicit forms of these invariance properties for the most imporant point
group symmetries can be found in
\begin_inset CommandInset citation
LatexCommand cite
key "schulz_point-group_1999"
literal "false"
\end_inset
.
\end_layout
\begin_layout Standard
2019-08-01 06:48:10 +03:00
If the field expansion is done around a point
\begin_inset Formula $\vect r_{p}$
\end_inset
different from the global origin, as in
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:E field expansion multiparticle"
plural "false"
caps "false"
noprefix "false"
\end_inset
2019-08-05 18:32:09 +03:00
, we have (CHECK THIS CAREFULLY AND EXPLAIN)
2019-08-01 06:48:10 +03:00
\begin_inset Formula
2019-08-01 11:15:13 +03:00
\begin{multline}
2019-08-05 18:32:09 +03:00
\left(\groupop g\vect E\right)\left(\omega,\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m',\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)\right.+\\
2019-08-01 11:15:13 +03:00
+\left.\outcoeffptlm p{\tau}lmD_{m',\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)\right).\label{eq:rotated E field expansion around outside origin}
\end{multline}
2019-08-01 06:48:10 +03:00
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Float figure
placement document
alignment document
wide false
sideways false
status open
2019-08-02 10:01:22 +03:00
\begin_layout Plain Layout
\align center
\begin_inset CommandInset include
LatexCommand input
filename "orbits.tex"
literal "true"
\end_inset
\end_layout
2019-08-01 06:48:10 +03:00
\begin_layout Plain Layout
\begin_inset Caption Standard
\begin_layout Plain Layout
Scatterer orbits under
\begin_inset Formula $D_{2}$
\end_inset
symmetry.
Particles
\begin_inset Formula $A,B,C,D$
\end_inset
lie outside of origin or any mirror planes, and together constitute an
orbit of the size equal to the order of the group,
\begin_inset Formula $\left|D_{2}\right|=4$
\end_inset
.
Particles
\begin_inset Formula $E,F$
\end_inset
lie on the
2019-08-02 10:01:22 +03:00
\begin_inset Formula $yz$
2019-08-01 06:48:10 +03:00
\end_inset
plane, hence the corresponding reflection maps each of them to itself,
but the
2019-08-02 10:01:22 +03:00
\begin_inset Formula $xz$
2019-08-01 06:48:10 +03:00
\end_inset
reflection (or the
\begin_inset Formula $\pi$
\end_inset
rotation around the
\begin_inset Formula $z$
\end_inset
axis) maps them to each other, forming a particle orbit of size 2
\begin_inset Note Note
status open
\begin_layout Plain Layout
=???
\end_layout
\end_inset
.
The particle
\begin_inset Formula $O$
\end_inset
in the very origin is always mapped to itself, constituting its own orbit.
\begin_inset CommandInset label
LatexCommand label
name "fig:D2-symmetric structure particle orbits"
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Note Note
status open
\begin_layout Plain Layout
TODO restructure this
\end_layout
\end_inset
With these transformation properties in hand, we can proceed to the effects
of point symmetries on the whole many-particle system.
Let us have a many-particle system symmetric with respect to a point group
\begin_inset Formula $G$
\end_inset
.
A symmetry operation
\begin_inset Formula $g\in G$
\end_inset
determines a permutation of the particles:
\begin_inset Formula $p\mapsto\pi_{g}(p)$
\end_inset
,
\begin_inset Formula $p\in\mathcal{P}$
\end_inset
2019-08-05 18:32:09 +03:00
; their positions transform as
\begin_inset Formula $\vect r_{\pi_{g}p}=R_{g}\vect r_{p}$
\end_inset
,
\begin_inset Formula $\vect r_{\pi_{g}^{-1}p}=R_{g}^{-1}\vect r_{p}$
\end_inset
.
In the symmetric multiple-scattering problem, transforming the whole field
according to
\begin_inset Formula $g$
\end_inset
, in terms of field expansion around a particle originally labelled as
\begin_inset Formula $p$
\end_inset
\begin_inset Formula
\begin{align*}
\left(\groupop g\vect E\right)\left(\omega,\vect r\right) & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)\right.+\\
& \quad+\left.\outcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)\right)\\
& =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{\pi_{g}p}\right)\right)\right.\\
& \quad+\left.\outcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{\pi_{g}p}\right)\right)\right)\\
& =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm{\pi_{g}^{-1}q}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{q}\right)\right)\right.\\
& \quad+\left.\outcoeffptlm{\pi_{g}^{-1}q}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{q}\right)\right)\right)
\end{align*}
\end_inset
In the last step, we relabeled
\begin_inset Formula $q=\pi_{g}p$
\end_inset
2019-08-01 06:48:10 +03:00
.
2019-08-05 18:32:09 +03:00
This means that the field expansion coefficients
\begin_inset Formula $\rcoeffp p,\outcoeffp p$
\end_inset
transform as
\begin_inset Formula
\begin{align}
\rcoeffptlm p{\tau}lm & \overset{g}{\longmapsto}\rcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right),\nonumber \\
\outcoeffptlm p{\tau}lm & \overset{g}{\longmapsto}\outcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right).\label{eq:excitation coefficient under symmetry operation}
\end{align}
\end_inset
For a given particle
2019-08-01 06:48:10 +03:00
\begin_inset Formula $p$
\end_inset
, we will call the set of particles onto which any of the symmetries maps
the particle
\begin_inset Formula $p$
\end_inset
, i.e.
the set
\begin_inset Formula $\left\{ \pi_{g}\left(p\right);g\in G\right\} $
\end_inset
, as the
\emph on
orbit
\emph default
of particle
\begin_inset Formula $p$
\end_inset
.
The whole set
\begin_inset Formula $\mathcal{P}$
\end_inset
can therefore be divided into the different particle orbits; an example
is in Fig.
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:D2-symmetric structure particle orbits"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
2019-08-05 18:32:09 +03:00
The importance of the particle orbits stems from fact that the expansion
coefficients belonging to particles in different orbits are not related
together under the group action in
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:excitation coefficient under symmetry operation"
plural "false"
caps "false"
noprefix "false"
2019-08-01 06:48:10 +03:00
\end_inset
2019-08-05 18:32:09 +03:00
.
2019-08-03 12:06:54 +03:00
As before, we introduce a short-hand pairwise matrix notation for
2019-08-01 06:48:10 +03:00
\begin_inset CommandInset ref
2019-08-02 10:11:13 +03:00
LatexCommand eqref
2019-08-01 06:48:10 +03:00
reference "eq:excitation coefficient under symmetry operation"
plural "false"
caps "false"
noprefix "false"
\end_inset
2019-08-05 18:32:09 +03:00
(TODO avoid notation clash here in a more consistent and readable way!)
2019-08-03 12:06:54 +03:00
\begin_inset Formula
\begin{align}
\rcoeffp p & \overset{g}{\longmapsto}\tilde{J}\left(g\right)\rcoeffp{\pi_{g}^{-1}(p)},\nonumber \\
\outcoeffp p & \overset{g}{\longmapsto}\tilde{J}\left(g\right)\outcoeffp{\pi_{g}^{-1}(p)},\label{eq:excitation coefficient under symmetry operation matrix form}
\end{align}
\end_inset
and also a global block-matrix form
2019-08-01 06:48:10 +03:00
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{align}
2019-08-03 12:06:54 +03:00
\rcoeff & \overset{g}{\longmapsto}J\left(g\right)a,\nonumber \\
\outcoeff & \overset{g}{\longmapsto}J\left(g\right)\outcoeff.\label{eq:excitation coefficient under symmetry operation global block form}
2019-08-01 06:48:10 +03:00
\end{align}
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
The matrices
\begin_inset Formula $D\left(g\right)$
\end_inset
,
\begin_inset Formula $g\in G$
\end_inset
will play a crucial role blablabla
\end_layout
\end_inset
If the particle indices are ordered in a way that the particles belonging
to the same orbit are grouped together,
\begin_inset Formula $J\left(g\right)$
\end_inset
2019-08-01 08:21:00 +03:00
will be a block-diagonal unitary matrix, each block (also unitary) representing
the action of
\begin_inset Formula $g$
\end_inset
on one particle orbit.
All the
\begin_inset Formula $J\left(g\right)$
\end_inset
s make together a (reducible) linear representation of
\begin_inset Formula $G$
\end_inset
.
2019-08-01 06:48:10 +03:00
\end_layout
\begin_layout Subsection
Irrep decomposition
\end_layout
\begin_layout Standard
Knowledge of symmetry group actions
2019-08-01 08:21:00 +03:00
\begin_inset Formula $J\left(g\right)$
2019-08-01 06:48:10 +03:00
\end_inset
on the field expansion coefficients give us the possibility to construct
a symmetry adapted basis in which we can block-diagonalise the multiple-scatter
ing problem matrix
\begin_inset Formula $\left(I-TS\right)$
\end_inset
2019-08-01 08:21:00 +03:00
.
Let
\begin_inset Formula $\Gamma_{n}$
\end_inset
be the
\begin_inset Formula $d_{n}$
\end_inset
-dimensional irreducible matrix representations of
\begin_inset Formula $G$
\end_inset
consisting of matrices
\begin_inset Formula $D^{\Gamma_{n}}\left(g\right)$
\end_inset
.
Then the projection operators
\begin_inset Formula
\[
P_{kl}^{\left(\Gamma_{n}\right)}\equiv\frac{d_{n}}{\left|G\right|}\sum_{g\in G}\left(D^{\Gamma_{n}}\left(g\right)\right)_{kl}^{*}J\left(g\right),\quad k,l=1,\dots,d_{n}
\]
\end_inset
project the full scattering system field expansion coefficient vectors
\begin_inset Formula $\rcoeff,\outcoeff$
\end_inset
onto a subspace corresponding to the irreducible representation
\begin_inset Formula $\Gamma_{n}$
\end_inset
.
The projectors can be used to construct a unitary transformation
\begin_inset Formula $U$
\end_inset
with components
\begin_inset Formula
\begin{equation}
U_{nri;p\tau lm}=\frac{d_{n}}{\left|G\right|}\sum_{g\in G}\left(D^{\Gamma_{n}}\left(g\right)\right)_{rr}^{*}J\left(g\right)_{p'\tau'l'm'(nri);p\tau lm}\label{eq:SAB unitary transformation operator}
\end{equation}
\end_inset
where
\begin_inset Formula $r$
\end_inset
goes from
\begin_inset Formula $1$
\end_inset
2019-08-06 10:16:53 +03:00
to
2019-08-01 08:21:00 +03:00
\begin_inset Formula $d_{n}$
\end_inset
and
\begin_inset Formula $i$
\end_inset
2019-08-06 10:16:53 +03:00
goes from 1 to the multiplicity of irreducible representation
2019-08-01 08:21:00 +03:00
\begin_inset Formula $\Gamma_{n}$
\end_inset
in the (reducible) representation of
\begin_inset Formula $G$
\end_inset
spanned by the field expansion coefficients
\begin_inset Formula $\rcoeff$
\end_inset
or
\begin_inset Formula $\outcoeff$
\end_inset
.
The indices
\begin_inset Formula $p',\tau',l',m'$
\end_inset
are given by an arbitrary bijective mapping
\begin_inset Formula $\left(n,r,i\right)\mapsto\left(p',\tau',l',m'\right)$
\end_inset
with the constraint that for given
\begin_inset Formula $n,r,i$
\end_inset
there are at least some non-zero elements
\begin_inset Formula $U_{nri;p\tau lm}$
\end_inset
.
For details, we refer the reader to textbooks about group representation
theory
\begin_inset Note Note
status open
\begin_layout Plain Layout
or linear representations?
\end_layout
\end_inset
, e.g.
\begin_inset CommandInset citation
LatexCommand cite
after "Chapter 4"
key "dresselhaus_group_2008"
literal "false"
\end_inset
or
\begin_inset CommandInset citation
LatexCommand cite
after "???"
key "bradley_mathematical_1972"
literal "false"
\end_inset
.
The transformation given by
\begin_inset Formula $U$
\end_inset
transforms the excitation coefficient vectors
\begin_inset Formula $\rcoeff,\outcoeff$
\end_inset
into a new,
\emph on
symmetry-adapted basis
\emph default
2019-08-01 06:48:10 +03:00
.
\end_layout
\begin_layout Standard
2019-08-01 08:21:00 +03:00
One can show that if an operator
\begin_inset Formula $M$
\end_inset
acting on the excitation coefficient vectors is invariant under the operations
of group
\begin_inset Formula $G$
\end_inset
, meaning that
\begin_inset Formula
\[
\forall g\in G:J\left(g\right)MJ\left(g\right)^{\dagger}=M,
\]
\end_inset
then in the symmetry-adapted basis,
\begin_inset Formula $M$
\end_inset
is block diagonal, or more specifically
\begin_inset Formula
\[
M_{\Gamma,r,i;\Gamma',r',j}^{\mathrm{s.a.b.}}=\frac{\delta_{\Gamma\Gamma'}\delta_{ij}}{d_{\Gamma}}\sum_{q}M{}_{\Gamma,r,q;\Gamma',r',q}^{\mathrm{s.a.b.}}.
\]
\end_inset
Both the
\begin_inset Formula $T$
\end_inset
and
\begin_inset Formula $\trops$
\end_inset
operators (and trivially also the identity
\begin_inset Formula $I$
\end_inset
) in
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Multiple-scattering problem block form"
plural "false"
caps "false"
noprefix "false"
\end_inset
are invariant under the actions of whole system symmetry group, so
\begin_inset Formula $\left(I-T\trops\right)$
\end_inset
is also invariant, hence
\begin_inset Formula $U\left(I-T\trops\right)U^{\dagger}$
\end_inset
is a block-diagonal matrix, and the problem
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Multiple-scattering problem block form"
plural "false"
caps "false"
noprefix "false"
\end_inset
can be solved for each block separately.
\end_layout
\begin_layout Standard
From the computational perspective, it is important to note that
\begin_inset Formula $U$
\end_inset
is at least as sparse as
\begin_inset Formula $J\left(g\right)$
\end_inset
(which is
\begin_inset Quotes eld
\end_inset
orbit-block
\begin_inset Quotes erd
\end_inset
diagonal), hence the block-diagonalisation can be performed fast.
\begin_inset Note Note
status open
\begin_layout Plain Layout
Kvantifikovat!
\end_layout
\end_inset
2019-08-01 06:48:10 +03:00
2019-08-01 04:38:51 +03:00
\end_layout
2019-07-31 13:02:10 +03:00
\begin_layout Subsection
Periodic systems
\end_layout
2019-08-01 10:48:29 +03:00
\begin_layout Standard
For periodic systems, we can in similar manner also block-diagonalise the
2019-08-04 18:24:17 +03:00
\begin_inset Formula $M\left(\omega,\vect k\right)=\left(I-T\left(\omega\right)W\left(\omega,\vect k\right)\right)$
2019-08-01 10:48:29 +03:00
\end_inset
from the left hand side of eqs.
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Multiple-scattering problem unit cell block form"
plural "false"
caps "false"
noprefix "false"
\end_inset
,
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:lattice mode equation"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
Hovewer, in this case,
\begin_inset Formula $W\left(\omega,\vect k\right)$
\end_inset
is in general not invariant under the whole point group symmetry subgroup
of the system geometry due to the
\begin_inset Formula $\vect k$
\end_inset
dependence.
In other words, only those point symmetries that the
\begin_inset Formula $e^{i\vect k\cdot\vect r}$
\end_inset
modulation does not break are preserved, and no preservation of point symmetrie
s happens unless
\begin_inset Formula $\vect k$
\end_inset
lies somewhere in the high-symmetry parts of the Brillouin zone.
However, the high-symmetry points are usually the ones of the highest physical
interest, for it is where the band edges
\begin_inset Note Note
status open
\begin_layout Plain Layout
or
\begin_inset Quotes eld
\end_inset
dirac points
\begin_inset Quotes erd
\end_inset
\end_layout
\end_inset
are typically located.
\end_layout
\begin_layout Standard
The transformation to the symmetry adapted basis
\begin_inset Formula $U$
\end_inset
is constructed in a similar way as in the finite case, but because we do
not work with all the (infinite number of) scatterers but only with one
unit cell, additional phase factors
\begin_inset Formula $e^{i\vect k\cdot\vect r_{p}}$
\end_inset
appear in the per-unit-cell group action
\begin_inset Formula $J(g)$
\end_inset
2019-08-03 12:06:54 +03:00
: this can happen if the point group symmetry maps some of the scatterers
from the reference unit cell to scatterers belonging to other unit cells.
2019-08-01 10:48:29 +03:00
This is illustrated in Fig.
\begin_inset CommandInset ref
LatexCommand ref
reference "Phase factor illustration"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
2019-08-03 12:06:54 +03:00
Fig.
\begin_inset CommandInset ref
LatexCommand ref
reference "Phase factor illustration"
plural "false"
caps "false"
noprefix "false"
\end_inset
a shows a hexagonal periodic array with
\begin_inset Formula $p6m$
\end_inset
wallpaper group symmetry, with lattice vectors
\begin_inset Formula $\vect a_{1}=\left(a,0\right)$
\end_inset
and
\begin_inset Formula $\vect a_{2}=\left(a/2,\sqrt{3}a/2\right)$
\end_inset
.
If we delimit our representative unit cell as the Wigner-Seitz cell with
origin in a
\begin_inset Formula $D_{6}$
\end_inset
point group symmetry center (there is one per each unit cell).
Per unit cell, there are five different particles placed on the unit cell
boundary, and we need to make a choice to which unit cell the particles
on the boundary belong; in our case, we choose that a unit cell includes
the particles on the left as denoted by different colors.
If the Bloch vector is at the upper
\begin_inset Formula $M$
\end_inset
point,
\begin_inset Formula $\vect k=\vect M_{1}=\left(0,2\pi/\sqrt{3}a\right)$
\end_inset
, it creates a relative phase of
\begin_inset Formula $\pi$
\end_inset
between the unit cell rows, and the original
\begin_inset Formula $D_{6}$
\end_inset
symmetry is reduced to
\begin_inset Formula $D_{2}$
\end_inset
.
The
\begin_inset Quotes eld
\end_inset
horizontal
\begin_inset Quotes erd
\end_inset
mirror operation
\begin_inset Formula $\sigma_{xz}$
\end_inset
maps, acording to our boundary division, all the particles only inside
the same unit cell, e.g.
\begin_inset Formula
\begin{align*}
2019-08-06 10:16:53 +03:00
\outcoeffp{\vect0A} & \overset{\sigma_{xz}}{\longmapsto}\tilde{J}\left(\sigma_{xz}\right)\outcoeffp{\vect0E},\\
\outcoeff_{\vect0C} & \overset{\sigma_{xz}}{\longmapsto}\tilde{J}\left(\sigma_{xz}\right)\outcoeffp{\vect0C},
2019-08-03 12:06:54 +03:00
\end{align*}
\end_inset
as in eq.
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:excitation coefficient under symmetry operation"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
However, both the
\begin_inset Quotes eld
\end_inset
vertical
\begin_inset Quotes erd
\end_inset
mirroring
\begin_inset Formula $\sigma_{yz}$
\end_inset
and the
\begin_inset Formula $C_{2}$
\end_inset
rotation map the boundary particles onto the boundaries that do not belong
to the reference unit cell with
\begin_inset Formula $\vect n=\left(0,0\right)$
\end_inset
, so we have, explicitly writing down also the lattice point indices
\begin_inset Formula $\vect n$
\end_inset
,
\begin_inset Formula
\begin{align*}
2019-08-06 10:16:53 +03:00
\outcoeffp{\vect0A} & \overset{\sigma_{yz}}{\longmapsto}\tilde{J}\left(\sigma_{yz}\right)\outcoeffp{\left(0,1\right)E},\\
\outcoeff_{\vect0C} & \overset{\sigma_{yz}}{\longmapsto}\tilde{J}\left(\sigma_{yz}\right)\outcoeffp{\left(1,0\right)C},
2019-08-03 12:06:54 +03:00
\end{align*}
\end_inset
but we want
\begin_inset Formula $J(g)$
\end_inset
to operate only inside one unit cell, so we use the Bloch condition
2019-08-06 10:16:53 +03:00
\begin_inset Formula $\outcoeffp{\vect n,\alpha}=\outcoeffp{\vect0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}}$
2019-08-03 12:06:54 +03:00
\end_inset
: in this case, we have
2019-08-06 10:16:53 +03:00
\begin_inset Formula $\outcoeffp{\left(0,1\right)\alpha}=\outcoeffp{\vect0\alpha}e^{i\vect M_{1}\cdot\vect a_{2}}=\outcoeffp{\vect0\alpha}e^{i0}=\outcoeffp{\vect0\alpha}$
2019-08-03 12:06:54 +03:00
\end_inset
,
2019-08-06 10:16:53 +03:00
\begin_inset Formula $\outcoeffp{\left(1,0\right)\alpha}=e^{i\vect M_{1}\cdot\vect a_{2}}\outcoeffp{\vect0\alpha}=e^{i\pi}\outcoeffp{\vect0\alpha}=-\outcoeffp{\vect0\alpha},$
2019-08-03 12:06:54 +03:00
\end_inset
so
\begin_inset Formula
\begin{align*}
2019-08-06 10:16:53 +03:00
\outcoeffp{\vect0A} & \overset{\sigma_{yz}}{\longmapsto}-\tilde{J}\left(\sigma_{yz}\right)\outcoeffp{\vect0E},\\
\outcoeff_{\vect0C} & \overset{\sigma_{yz}}{\longmapsto}\tilde{J}\left(\sigma_{yz}\right)\outcoeffp{\vect0C}.
2019-08-03 12:06:54 +03:00
\end{align*}
\end_inset
If we set instead
\begin_inset Formula $\vect k=\vect K=\left(4\pi/3a,0\right),$
\end_inset
the original
\begin_inset Formula $D_{6}$
\end_inset
point group symmetry reduces to
\begin_inset Formula $D_{3}$
\end_inset
and the unit cells can obtain a relative phase factor of
\begin_inset Formula $e^{-2\pi i/3}$
\end_inset
(blue) or
\begin_inset Formula $e^{2\pi i/3}$
\end_inset
(red).
The
\begin_inset Formula $\sigma_{xz}$
\end_inset
mirror symmetry, as in the previous case, acts purely inside the reference
unit cell with our boundary division.
However, for a counterclockwise
\begin_inset Formula $C_{3}$
\end_inset
rotation, as an example we have
\begin_inset Formula
\begin{align*}
2019-08-06 10:16:53 +03:00
\outcoeffp{\vect0A} & \overset{C_{3}}{\longmapsto}\tilde{J}\left(C_{3}\right)\outcoeffp{\left(0,-1\right)E}=e^{2\pi i/3}\tilde{J}\left(C_{3}\right)\outcoeffp{\vect0E},\\
\outcoeff_{\vect0C} & \overset{C_{3}}{\longmapsto}\tilde{J}\left(C_{3}\right)\outcoeffp{\left(1,-1\right)A}=e^{-2\pi i/3}\tilde{J}\left(C_{3}\right)\outcoeffp{\vect0A},\\
\outcoeff_{\vect0B} & \overset{C_{3}}{\longmapsto}\tilde{J}\left(C_{3}\right)\outcoeffp{\left(1,-1\right)B}=e^{-2\pi i/3}\tilde{J}\left(C_{3}\right)\outcoeffp{\vect0B},
2019-08-03 12:06:54 +03:00
\end{align*}
\end_inset
because in this case, the Bloch condition gives
2019-08-06 10:16:53 +03:00
\begin_inset Formula $\outcoeffp{\left(0,-1\right)\alpha}=\outcoeffp{\vect0\alpha}e^{i\vect K\cdot\left(-\vect a_{2}\right)}=\outcoeffp{\vect0\alpha}e^{-4\pi i/3}=\outcoeffp{\vect0\alpha}e^{2\pi i/3}=\outcoeffp{\vect0\alpha}$
2019-08-03 12:06:54 +03:00
\end_inset
,
2019-08-06 10:16:53 +03:00
\begin_inset Formula $\outcoeffp{\left(1,-1\right)\alpha}=\outcoeffp{\vect0\alpha}e^{i\vect K\cdot\left(\vect a_{1}-\vect a_{2}\right)}=e^{-2\pi i/3}\outcoeffp{\vect0\alpha}.$
2019-08-03 12:06:54 +03:00
\end_inset
\end_layout
\begin_layout Standard
2019-08-01 10:48:29 +03:00
\begin_inset Float figure
placement document
alignment document
wide false
sideways false
2019-08-03 12:06:54 +03:00
status collapsed
\begin_layout Plain Layout
\align center
\begin_inset Graphics
filename p6m_mpoint.png
width 100col%
\end_inset
\end_layout
2019-08-01 10:48:29 +03:00
\begin_layout Plain Layout
2019-08-03 12:06:54 +03:00
\begin_inset Graphics
filename p6m_kpoint.png
width 100col%
\end_inset
2019-08-01 10:48:29 +03:00
\end_layout
\begin_layout Plain Layout
\begin_inset Caption Standard
\begin_layout Plain Layout
\begin_inset CommandInset label
LatexCommand label
name "Phase factor illustration"
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
More rigorous analysis can be found e.g.
in
\begin_inset CommandInset citation
LatexCommand cite
after "chapters 10– 11"
key "dresselhaus_group_2008"
literal "true"
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset Note Note
status open
\begin_layout Plain Layout
In the group-theoretical terminology, blablabla little groups blabla bla...
\end_layout
\end_inset
\end_layout
2019-07-31 13:02:10 +03:00
\begin_layout Standard
2019-08-01 06:48:10 +03:00
\begin_inset Note Note
status open
\begin_layout Plain Layout
2019-07-31 13:02:10 +03:00
A general overview of utilizing group theory to find lattice modes at high-symme
try points of the Brillouin zone can be found e.g.
in
\begin_inset CommandInset citation
LatexCommand cite
after "chapters 10– 11"
key "dresselhaus_group_2008"
literal "true"
\end_inset
; here we use the same notation.
\end_layout
2019-08-01 06:48:10 +03:00
\begin_layout Plain Layout
2019-07-31 13:02:10 +03:00
We analyse the symmetries of the system in the same VSWF representation
as used in the
\begin_inset Formula $T$
\end_inset
-matrix formalism introduced above.
We are interested in the modes at the
\begin_inset Formula $\Kp$
\end_inset
-point of the hexagonal lattice, which has the
\begin_inset Formula $D_{3h}$
\end_inset
point symmetry.
The six irreducible representations (irreps) of the
\begin_inset Formula $D_{3h}$
\end_inset
group are known and are available in the literature in their explicit forms.
In order to find and classify the modes, we need to find a decomposition
of the lattice mode representation
\begin_inset Formula $\Gamma_{\mathrm{lat.mod.}}=\Gamma^{\mathrm{equiv.}}\otimes\Gamma_{\mathrm{vec.}}$
\end_inset
into the irreps of
\begin_inset Formula $D_{3h}$
\end_inset
.
The equivalence representation
\begin_inset Formula $\Gamma^{\mathrm{equiv.}}$
\end_inset
is the
\begin_inset Formula $E'$
\end_inset
representation as can be deduced from
\begin_inset CommandInset citation
LatexCommand cite
after "eq. (11.19)"
key "dresselhaus_group_2008"
literal "true"
\end_inset
, eq.
(11.19) and the character table for
\begin_inset Formula $D_{3h}$
\end_inset
.
\begin_inset Formula $\Gamma_{\mathrm{vec.}}$
\end_inset
operates on a space spanned by the VSWFs around each nanoparticle in the
unit cell (the effects of point group operations on VSWFs are described
in
\begin_inset CommandInset citation
LatexCommand cite
key "schulz_point-group_1999"
literal "true"
\end_inset
).
This space can be then decomposed into invariant subspaces of the
\begin_inset Formula $D_{3h}$
\end_inset
using the projectors
\begin_inset Formula $\hat{P}_{ab}^{\left(\Gamma\right)}$
\end_inset
defined by
\begin_inset CommandInset citation
LatexCommand cite
after "eq. (4.28)"
key "dresselhaus_group_2008"
literal "true"
\end_inset
.
This way, we obtain a symmetry adapted basis
\begin_inset Formula $\left\{ \vect b_{\Gamma,r,i}^{\mathrm{s.a.b.}}\right\} $
\end_inset
as linear combinations of VSWFs
\begin_inset Formula $\vswfs lm{p,t}$
\end_inset
around the constituting nanoparticles (labeled
\begin_inset Formula $p$
\end_inset
),
\begin_inset Formula
\[
\vect b_{\Gamma,r,i}^{\mathrm{s.a.b.}}=\sum_{l,m,p,t}U_{\Gamma,r,i}^{p,t,l,m}\vswfs lm{p,t},
\]
\end_inset
where
\begin_inset Formula $\Gamma$
\end_inset
stands for one of the six different irreps of
\begin_inset Formula $D_{3h}$
\end_inset
,
\begin_inset Formula $r$
\end_inset
labels the different realisations of the same irrep, and the last index
\begin_inset Formula $i$
\end_inset
going from 1 to
\begin_inset Formula $d_{\Gamma}$
\end_inset
(the dimensionality of
\begin_inset Formula $\Gamma$
\end_inset
) labels the different partners of the same given irrep.
The number of how many times is each irrep contained in
\begin_inset Formula $\Gamma_{\mathrm{lat.mod.}}$
\end_inset
(i.e.
the range of index
\begin_inset Formula $r$
\end_inset
for given
\begin_inset Formula $\Gamma$
\end_inset
) depends on the multipole degree cutoff
\begin_inset Formula $l_{\mathrm{max}}$
\end_inset
.
\end_layout
2019-08-01 06:48:10 +03:00
\begin_layout Plain Layout
2019-07-31 13:02:10 +03:00
Each mode at the
\begin_inset Formula $\Kp$
\end_inset
-point shall lie in the irreducible spaces of only one of the six possible
irreps and it can be shown via
\begin_inset CommandInset citation
LatexCommand cite
after "eq. (2.51)"
key "dresselhaus_group_2008"
literal "true"
\end_inset
that, at the
\begin_inset Formula $\Kp$
\end_inset
-point, the matrix
\begin_inset Formula $M\left(\omega,\vect k\right)$
\end_inset
defined above takes a block-diagonal form in the symmetry-adapted basis,
\begin_inset Formula
\[
M\left(\omega,\vect K\right)_{\Gamma,r,i;\Gamma',r',j}^{\mathrm{s.a.b.}}=\frac{\delta_{\Gamma\Gamma'}\delta_{ij}}{d_{\Gamma}}\sum_{q}M\left(\omega,\vect K\right)_{\Gamma,r,q;\Gamma',r',q}^{\mathrm{s.a.b.}}.
\]
\end_inset
This enables us to decompose the matrix according to the irreps and to solve
the singular value problem in each irrep separately, as done in Fig.
\begin_inset CommandInset ref
LatexCommand ref
reference "smfig:dispersions"
\end_inset
(a).
\end_layout
2019-08-01 06:48:10 +03:00
\end_inset
\end_layout
2019-07-31 13:02:10 +03:00
\end_body
\end_document