2019-07-28 15:25:04 +03:00
|
|
|
|
#LyX 2.4 created this file. For more info see https://www.lyx.org/
|
2019-08-01 04:38:51 +03:00
|
|
|
|
\lyxformat 584
|
2019-06-30 21:30:54 +03:00
|
|
|
|
\begin_document
|
|
|
|
|
\begin_header
|
2019-07-20 07:09:31 +03:00
|
|
|
|
\save_transient_properties true
|
|
|
|
|
\origin unavailable
|
2019-06-30 21:30:54 +03:00
|
|
|
|
\textclass article
|
|
|
|
|
\use_default_options true
|
|
|
|
|
\maintain_unincluded_children false
|
2019-07-28 15:25:04 +03:00
|
|
|
|
\language english
|
2019-06-30 21:30:54 +03:00
|
|
|
|
\language_package default
|
2019-07-28 15:25:04 +03:00
|
|
|
|
\inputencoding utf8
|
|
|
|
|
\fontencoding auto
|
2019-07-20 07:09:31 +03:00
|
|
|
|
\font_roman "default" "TeX Gyre Pagella"
|
|
|
|
|
\font_sans "default" "default"
|
|
|
|
|
\font_typewriter "default" "default"
|
|
|
|
|
\font_math "auto" "auto"
|
2019-06-30 21:30:54 +03:00
|
|
|
|
\font_default_family default
|
2019-07-28 15:25:04 +03:00
|
|
|
|
\use_non_tex_fonts false
|
2019-06-30 21:30:54 +03:00
|
|
|
|
\font_sc false
|
2019-07-28 15:25:04 +03:00
|
|
|
|
\font_roman_osf true
|
|
|
|
|
\font_sans_osf false
|
|
|
|
|
\font_typewriter_osf false
|
2019-07-20 07:09:31 +03:00
|
|
|
|
\font_sf_scale 100 100
|
|
|
|
|
\font_tt_scale 100 100
|
|
|
|
|
\use_microtype false
|
|
|
|
|
\use_dash_ligatures true
|
2019-06-30 21:30:54 +03:00
|
|
|
|
\graphics default
|
2019-07-28 15:25:04 +03:00
|
|
|
|
\default_output_format default
|
2019-06-30 21:30:54 +03:00
|
|
|
|
\output_sync 0
|
|
|
|
|
\bibtex_command default
|
|
|
|
|
\index_command default
|
2019-07-28 15:25:04 +03:00
|
|
|
|
\float_placement class
|
|
|
|
|
\float_alignment class
|
2019-06-30 21:30:54 +03:00
|
|
|
|
\paperfontsize default
|
|
|
|
|
\spacing single
|
|
|
|
|
\use_hyperref true
|
|
|
|
|
\pdf_author "Marek Nečada"
|
|
|
|
|
\pdf_bookmarks true
|
|
|
|
|
\pdf_bookmarksnumbered false
|
|
|
|
|
\pdf_bookmarksopen false
|
|
|
|
|
\pdf_bookmarksopenlevel 1
|
|
|
|
|
\pdf_breaklinks false
|
|
|
|
|
\pdf_pdfborder false
|
|
|
|
|
\pdf_colorlinks false
|
|
|
|
|
\pdf_backref false
|
|
|
|
|
\pdf_pdfusetitle true
|
|
|
|
|
\papersize default
|
|
|
|
|
\use_geometry false
|
|
|
|
|
\use_package amsmath 1
|
|
|
|
|
\use_package amssymb 1
|
|
|
|
|
\use_package cancel 1
|
|
|
|
|
\use_package esint 1
|
|
|
|
|
\use_package mathdots 1
|
|
|
|
|
\use_package mathtools 1
|
|
|
|
|
\use_package mhchem 1
|
|
|
|
|
\use_package stackrel 1
|
|
|
|
|
\use_package stmaryrd 1
|
|
|
|
|
\use_package undertilde 1
|
|
|
|
|
\cite_engine basic
|
|
|
|
|
\cite_engine_type default
|
|
|
|
|
\biblio_style plain
|
|
|
|
|
\use_bibtopic false
|
|
|
|
|
\use_indices false
|
|
|
|
|
\paperorientation portrait
|
|
|
|
|
\suppress_date false
|
|
|
|
|
\justification true
|
|
|
|
|
\use_refstyle 1
|
2019-07-20 07:09:31 +03:00
|
|
|
|
\use_minted 0
|
2019-07-28 15:25:04 +03:00
|
|
|
|
\use_lineno 0
|
2019-06-30 21:30:54 +03:00
|
|
|
|
\index Index
|
|
|
|
|
\shortcut idx
|
|
|
|
|
\color #008000
|
|
|
|
|
\end_index
|
|
|
|
|
\secnumdepth 3
|
|
|
|
|
\tocdepth 3
|
|
|
|
|
\paragraph_separation indent
|
|
|
|
|
\paragraph_indentation default
|
2019-07-20 07:09:31 +03:00
|
|
|
|
\is_math_indent 0
|
|
|
|
|
\math_numbering_side default
|
2019-07-28 15:25:04 +03:00
|
|
|
|
\quotes_style english
|
2019-07-20 07:09:31 +03:00
|
|
|
|
\dynamic_quotes 0
|
2019-06-30 21:30:54 +03:00
|
|
|
|
\papercolumns 1
|
|
|
|
|
\papersides 1
|
|
|
|
|
\paperpagestyle default
|
2019-07-28 15:25:04 +03:00
|
|
|
|
\tablestyle default
|
2019-06-30 21:30:54 +03:00
|
|
|
|
\tracking_changes false
|
|
|
|
|
\output_changes false
|
|
|
|
|
\html_math_output 0
|
|
|
|
|
\html_css_as_file 0
|
|
|
|
|
\html_be_strict false
|
|
|
|
|
\end_header
|
|
|
|
|
|
|
|
|
|
\begin_body
|
|
|
|
|
|
|
|
|
|
\begin_layout Section
|
|
|
|
|
Finite systems
|
2019-08-04 07:35:02 +03:00
|
|
|
|
\begin_inset CommandInset label
|
|
|
|
|
LatexCommand label
|
|
|
|
|
name "sec:Finite"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
2019-06-30 21:30:54 +03:00
|
|
|
|
\end_layout
|
|
|
|
|
|
2019-07-19 11:20:13 +03:00
|
|
|
|
\begin_layout Standard
|
2019-07-20 07:09:31 +03:00
|
|
|
|
The basic idea of MSTMM is quite simple: the driving electromagnetic field
|
|
|
|
|
incident onto a scatterer is expanded into a vector spherical wavefunction
|
|
|
|
|
(VSWF) basis in which the single scattering problem is solved, and the
|
|
|
|
|
scattered field is then re-expanded into VSWFs centered at the other scatterers.
|
|
|
|
|
Repeating the same procedure with all (pairs of) scatterers yields a set
|
|
|
|
|
of linear equations, solution of which gives the coefficients of the scattered
|
|
|
|
|
field in the VSWF bases.
|
2019-07-28 23:39:56 +03:00
|
|
|
|
Once these coefficients have been found, one can evaluate various quantities
|
|
|
|
|
related to the scattering (such as cross sections or the scattered fields)
|
|
|
|
|
quite easily.
|
|
|
|
|
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\begin_layout Standard
|
2019-07-29 12:41:02 +03:00
|
|
|
|
The expressions appearing in the re-expansions are fairly complicated, and
|
|
|
|
|
the implementation of MSTMM is extremely error-prone also due to the various
|
|
|
|
|
conventions used in the literature.
|
2019-07-28 23:39:56 +03:00
|
|
|
|
Therefore although we do not re-derive from scratch the expressions that
|
2019-08-07 15:20:45 +03:00
|
|
|
|
can be found elsewhere in literature, for reader's reference we always
|
|
|
|
|
state them explicitly in our convention.
|
2019-07-19 11:20:13 +03:00
|
|
|
|
\end_layout
|
2019-07-01 14:50:46 +03:00
|
|
|
|
|
|
|
|
|
\begin_layout Subsection
|
|
|
|
|
Single-particle scattering
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
|
In order to define the basic concepts, let us first consider the case of
|
2019-08-07 15:20:45 +03:00
|
|
|
|
electromagnetic (EM) radiation scattered by a single particle.
|
2019-08-06 23:43:01 +03:00
|
|
|
|
We assume that the scatterer lies inside a closed ball
|
2019-11-07 00:29:41 +02:00
|
|
|
|
\begin_inset Formula $\closedball{R^{<}}{\vect 0}$
|
2019-07-01 14:50:46 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-08-06 23:43:01 +03:00
|
|
|
|
of radius
|
|
|
|
|
\begin_inset Formula $R^{<}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
and center in the origin of the coordinate system (which can be chosen
|
|
|
|
|
that way; the natural choice of
|
2019-11-07 00:29:41 +02:00
|
|
|
|
\begin_inset Formula $\closedball{R^{<}}{\vect 0}$
|
2019-07-01 14:50:46 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-08-06 23:43:01 +03:00
|
|
|
|
is the circumscribed ball of the scatterer) and that there exists a larger
|
|
|
|
|
open cocentric ball
|
2019-11-07 00:29:41 +02:00
|
|
|
|
\begin_inset Formula $\openball{R^{>}}{\vect 0}$
|
2019-08-06 23:43:01 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-08-07 15:20:45 +03:00
|
|
|
|
, such that the (non-empty) spherical shell
|
2019-11-07 00:29:41 +02:00
|
|
|
|
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}=\openball{R^{>}}{\vect 0}\setminus\closedball{R^{<}}{\vect 0}$
|
2019-08-06 23:43:01 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
is filled with a homogeneous isotropic medium with relative electric permittivi
|
|
|
|
|
ty
|
2019-07-01 14:50:46 +03:00
|
|
|
|
\begin_inset Formula $\epsilon(\vect r,\omega)=\epsbg(\omega)$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
and magnetic permeability
|
|
|
|
|
\begin_inset Formula $\mu(\vect r,\omega)=\mubg(\omega)$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
, and that the whole system is linear, i.e.
|
|
|
|
|
the material properties of neither the medium nor the scatterer depend
|
|
|
|
|
on field intensities.
|
2019-07-28 23:39:56 +03:00
|
|
|
|
Under these assumptions, the EM fields
|
|
|
|
|
\begin_inset Formula $\vect{\Psi}=\vect E,\vect H$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
in
|
2019-11-07 00:29:41 +02:00
|
|
|
|
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}$
|
2019-07-01 14:50:46 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-07-28 23:39:56 +03:00
|
|
|
|
must satisfy the homogeneous vector Helmholtz equation together with the
|
|
|
|
|
transversality condition
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{equation}
|
2019-08-07 15:20:45 +03:00
|
|
|
|
\left(\nabla^{2}+\kappa^{2}\right)\Psi\left(\vect r,\vect{\omega}\right)=0,\quad\nabla\cdot\vect{\Psi}\left(\vect r,\vect{\omega}\right)=0\label{eq:Helmholtz eq}
|
2019-07-28 23:39:56 +03:00
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset Note Note
|
|
|
|
|
status open
|
|
|
|
|
|
|
|
|
|
\begin_layout Plain Layout
|
|
|
|
|
frequency-space Maxwell's equations
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{align*}
|
2020-03-15 15:04:18 +02:00
|
|
|
|
\nabla\times\vect E\left(\vect r,\omega\right)-i\kappa\eta_{0}\eta\vect H\left(\vect r,\omega\right) & =0,\\
|
2019-07-28 23:39:56 +03:00
|
|
|
|
\eta_{0}\eta\nabla\times\vect H\left(\vect r,\omega\right)+ik\vect E\left(\vect r,\omega\right) & =0.
|
|
|
|
|
\end{align*}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\end_layout
|
|
|
|
|
|
2019-07-01 14:50:46 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset Note Note
|
|
|
|
|
status open
|
|
|
|
|
|
|
|
|
|
\begin_layout Plain Layout
|
|
|
|
|
todo define
|
|
|
|
|
\begin_inset Formula $\Psi$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
, mention transversality
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2020-03-15 15:04:18 +02:00
|
|
|
|
with wave number
|
|
|
|
|
\begin_inset Foot
|
|
|
|
|
status open
|
|
|
|
|
|
|
|
|
|
\begin_layout Plain Layout
|
|
|
|
|
Throughout this text, we use the letter
|
|
|
|
|
\begin_inset Formula $\kappa$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
for wave number in order to avoid confusion with Bloch vector
|
|
|
|
|
\begin_inset Formula $\vect k$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
and its magnitude, introduced in Section
|
|
|
|
|
\begin_inset CommandInset ref
|
|
|
|
|
LatexCommand ref
|
|
|
|
|
reference "sec:Infinite"
|
|
|
|
|
plural "false"
|
|
|
|
|
caps "false"
|
|
|
|
|
noprefix "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
.
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
2019-08-07 15:20:45 +03:00
|
|
|
|
\begin_inset Formula $\kappa=\kappa\left(\omega\right)=\omega\sqrt{\mubg(\omega)\epsbg(\omega)}/c_{0}$
|
2019-07-18 22:50:01 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-08-07 15:20:45 +03:00
|
|
|
|
, as can be derived from Maxwell's equations
|
2019-08-01 11:01:04 +03:00
|
|
|
|
\begin_inset CommandInset citation
|
|
|
|
|
LatexCommand cite
|
|
|
|
|
key "jackson_classical_1998"
|
|
|
|
|
literal "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
.
|
2019-08-07 15:20:45 +03:00
|
|
|
|
\begin_inset Note Note
|
|
|
|
|
status open
|
|
|
|
|
|
|
|
|
|
\begin_layout Plain Layout
|
|
|
|
|
TODO ref to the chapter.
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-07-28 23:39:56 +03:00
|
|
|
|
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\begin_layout Subsubsection
|
|
|
|
|
Spherical waves
|
2019-07-01 14:50:46 +03:00
|
|
|
|
\end_layout
|
|
|
|
|
|
2019-07-20 07:09:31 +03:00
|
|
|
|
\begin_layout Standard
|
2019-07-28 23:39:56 +03:00
|
|
|
|
Equation
|
|
|
|
|
\begin_inset CommandInset ref
|
|
|
|
|
LatexCommand ref
|
|
|
|
|
reference "eq:Helmholtz eq"
|
|
|
|
|
plural "false"
|
|
|
|
|
caps "false"
|
|
|
|
|
noprefix "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
can be solved by separation of variables in spherical coordinates to give
|
|
|
|
|
the solutions – the
|
|
|
|
|
\emph on
|
|
|
|
|
regular
|
|
|
|
|
\emph default
|
|
|
|
|
and
|
|
|
|
|
\emph on
|
|
|
|
|
outgoing
|
|
|
|
|
\emph default
|
|
|
|
|
vector spherical wavefunctions (VSWFs)
|
2020-03-15 15:04:18 +02:00
|
|
|
|
\begin_inset Formula $\vswfrtlm{\tau}lm\left(\kappa\vect r\right)$
|
2019-07-28 23:39:56 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
and
|
2020-03-15 15:04:18 +02:00
|
|
|
|
\begin_inset Formula $\vswfouttlm{\tau}lm\left(\kappa\vect r\right)$
|
2019-07-28 23:39:56 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
, respectively, defined as follows:
|
|
|
|
|
\begin_inset Formula
|
2019-08-01 04:38:51 +03:00
|
|
|
|
\begin{align}
|
2020-06-16 13:15:31 +03:00
|
|
|
|
\vswfrtlm 1lm\left(\kappa\vect r\right) & =j_{l}\left(\kappa r\right)\vsh 1lm\left(\uvec r\right),\nonumber \\
|
|
|
|
|
\vswfrtlm 2lm\left(\kappa\vect r\right) & =\frac{1}{\kappa r}\frac{\ud\left(\kappa rj_{l}\left(\kappa r\right)\right)}{\ud\left(\kappa r\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{j_{l}\left(\kappa r\right)}{\kappa r}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF regular}
|
2019-08-01 04:38:51 +03:00
|
|
|
|
\end{align}
|
2019-07-28 23:39:56 +03:00
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset Formula
|
2019-08-01 04:38:51 +03:00
|
|
|
|
\begin{align}
|
2020-06-16 13:15:31 +03:00
|
|
|
|
\vswfouttlm 1lm\left(\kappa\vect r\right) & =h_{l}^{\left(1\right)}\left(\kappa r\right)\vsh 1lm\left(\uvec r\right),\nonumber \\
|
|
|
|
|
\vswfouttlm 2lm\left(\kappa\vect r\right) & =\frac{1}{kr}\frac{\ud\left(\kappa rh_{l}^{\left(1\right)}\left(\kappa r\right)\right)}{\ud\left(\kappa r\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{h_{l}^{\left(1\right)}\left(\kappa r\right)}{\kappa r}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF outgoing}\\
|
2019-08-01 04:38:51 +03:00
|
|
|
|
& \tau=1,2;\quad l=1,2,3,\dots;\quad m=-l,-l+1,\dots,+l,\nonumber
|
|
|
|
|
\end{align}
|
2019-07-28 23:39:56 +03:00
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
where
|
2020-03-15 15:04:18 +02:00
|
|
|
|
\begin_inset Formula $\vect r=r\uvec r=r\left(\sin\theta\left(\uvec x\cos\phi+\uvec y\sin\phi\right)+\uvec z\cos\theta\right)$
|
2019-07-28 23:39:56 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
2020-03-15 15:04:18 +02:00
|
|
|
|
;
|
2019-07-28 23:39:56 +03:00
|
|
|
|
\begin_inset Formula $j_{l}\left(x\right),h_{l}^{\left(1\right)}\left(x\right)=j_{l}\left(x\right)+iy_{l}\left(x\right)$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
are the regular spherical Bessel function and spherical Hankel function
|
2020-03-15 15:04:18 +02:00
|
|
|
|
of the first kind
|
|
|
|
|
\begin_inset Foot
|
|
|
|
|
status open
|
|
|
|
|
|
|
|
|
|
\begin_layout Plain Layout
|
|
|
|
|
The interpretation of
|
|
|
|
|
\begin_inset Formula $\vswfouttlm{\tau}lm\left(\kappa\vect r\right)$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
containing spherical Hankel functions of the first kind as
|
|
|
|
|
\emph on
|
|
|
|
|
outgoing
|
|
|
|
|
\emph default
|
|
|
|
|
waves at positive frequencies is associated with a specific choice of sign
|
|
|
|
|
in the exponent of time-frequency transformation,
|
|
|
|
|
\begin_inset Formula $\psi\left(t\right)=\left(2\pi\right)^{-\pi/2}\int\psi\left(\omega\right)e^{-i\omega t}\,\ud\omega$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
.
|
|
|
|
|
This matters especially when considering materials with gain or loss: in
|
|
|
|
|
this convention, lossy materials will have refractive index (and wavenumber
|
|
|
|
|
|
|
|
|
|
\begin_inset Formula $\kappa$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
, at a given positive frequency) with
|
|
|
|
|
\emph on
|
|
|
|
|
positive
|
|
|
|
|
\emph default
|
2020-06-16 13:15:31 +03:00
|
|
|
|
imaginary part, and gain materials will have it negative and, for example,
|
2020-03-15 15:04:18 +02:00
|
|
|
|
Drude-Lorenz model of a lossy medium will have poles in the lower complex
|
|
|
|
|
half-plane.
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
, respectively, as in
|
2019-08-06 23:43:01 +03:00
|
|
|
|
\begin_inset CommandInset citation
|
|
|
|
|
LatexCommand cite
|
|
|
|
|
after "§10.47"
|
|
|
|
|
key "NIST:DLMF"
|
|
|
|
|
literal "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
, and
|
2019-07-28 23:39:56 +03:00
|
|
|
|
\begin_inset Formula $\vsh{\tau}lm$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
are the
|
|
|
|
|
\emph on
|
|
|
|
|
vector spherical harmonics
|
|
|
|
|
\emph default
|
|
|
|
|
|
|
|
|
|
\begin_inset Formula
|
2019-08-01 04:38:51 +03:00
|
|
|
|
\begin{align}
|
2020-06-16 13:15:31 +03:00
|
|
|
|
\vsh 1lm\left(\uvec r\right) & =\frac{1}{\sqrt{l\left(l+1\right)}}\nabla\times\left(\vect r\ush lm\left(\uvec r\right)\right)=\frac{1}{\sqrt{l\left(l+1\right)}}\nabla\ush lm\left(\uvec r\right)\times\vect r,\nonumber \\
|
|
|
|
|
\vsh 2lm\left(\uvec r\right) & =\frac{1}{\sqrt{l\left(l+1\right)}}r\nabla\ush lm\left(\uvec r\right),\nonumber \\
|
|
|
|
|
\vsh 3lm\left(\uvec r\right) & =\uvec r\ush lm\left(\uvec r\right).\label{eq:vector spherical harmonics definition}
|
2019-08-01 04:38:51 +03:00
|
|
|
|
\end{align}
|
2019-07-28 23:39:56 +03:00
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2020-03-20 16:47:00 +02:00
|
|
|
|
Note that the regular waves
|
|
|
|
|
\begin_inset Formula $\vswfrtlm{\tau}lm$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
(with fields expressed in cartesian coordinates) have all well-defined
|
|
|
|
|
limits in the origin, and except for the
|
|
|
|
|
\begin_inset Quotes eld
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
electric dipolar
|
|
|
|
|
\begin_inset Quotes erd
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
waves
|
2020-06-16 13:15:31 +03:00
|
|
|
|
\begin_inset Formula $\vswfrtlm 21m$
|
2020-03-20 16:47:00 +02:00
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
, they vanish.
|
|
|
|
|
In our convention, the (scalar) spherical harmonics
|
2019-07-28 23:39:56 +03:00
|
|
|
|
\begin_inset Formula $\ush lm$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-08-06 23:43:01 +03:00
|
|
|
|
are identical to those in
|
|
|
|
|
\begin_inset CommandInset citation
|
|
|
|
|
LatexCommand cite
|
|
|
|
|
after "14.30.1"
|
|
|
|
|
key "NIST:DLMF"
|
|
|
|
|
literal "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
, i.e.
|
2019-07-28 23:39:56 +03:00
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\[
|
2020-03-15 15:04:18 +02:00
|
|
|
|
\ush lm\left(\uvec r\right)=\left(\frac{\left(l-m\right)!\left(2l+1\right)}{4\pi\left(l+m\right)!}\right)^{\frac{1}{2}}e^{im\phi}\dlmfFer lm\left(\cos\theta\right)
|
2019-07-28 23:39:56 +03:00
|
|
|
|
\]
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2020-03-15 15:04:18 +02:00
|
|
|
|
where
|
|
|
|
|
\begin_inset Formula $ $
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
importantly, the Ferrers functions
|
2019-07-28 23:39:56 +03:00
|
|
|
|
\begin_inset Formula $\dlmfFer lm$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-08-06 23:43:01 +03:00
|
|
|
|
defined as in
|
|
|
|
|
\begin_inset CommandInset citation
|
|
|
|
|
LatexCommand cite
|
|
|
|
|
after "§14.3(i)"
|
|
|
|
|
key "NIST:DLMF"
|
|
|
|
|
literal "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
do already contain the Condon-Shortley phase
|
2019-07-28 23:39:56 +03:00
|
|
|
|
\begin_inset Formula $\left(-1\right)^{m}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
.
|
|
|
|
|
\begin_inset Note Note
|
|
|
|
|
status open
|
|
|
|
|
|
|
|
|
|
\begin_layout Plain Layout
|
|
|
|
|
TODO názornější definice.
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2020-03-15 21:15:42 +02:00
|
|
|
|
For later use, we also introduce
|
|
|
|
|
\begin_inset Quotes eld
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
dual
|
|
|
|
|
\begin_inset Quotes erd
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
spherical harmonics
|
|
|
|
|
\begin_inset Formula $\ushD lm$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
defined by duality relation with the
|
|
|
|
|
\begin_inset Quotes eld
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
usual
|
|
|
|
|
\begin_inset Quotes erd
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
spherical harmonics
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\iint\ushD{l'}{m'}\left(\uvec r\right)\ush lm\left(\uvec r\right)\,\ud\Omega=\delta_{\tau'\tau}\delta_{l'l}\delta_{m'm}\label{eq:dual spherical harmonics}
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
and corresponding dual vector spherical harmonics
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\iint\vshD{\tau'}{l'}{m'}\left(\uvec r\right)\cdot\vsh{\tau}lm\left(\uvec r\right)\,\ud\Omega=\delta_{\tau'\tau}\delta_{l'l}\delta_{m'm}\label{eq:dual vsh}
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
(complex conjugation not implied in the dot product here).
|
|
|
|
|
In our convention, we have
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{align*}
|
|
|
|
|
\ush lm\left(\uvec r\right) & =\left(\ush lm\left(\uvec r\right)\right)^{*}=\left(-1\right)^{m}\ush l{-m}\left(\uvec r\right).\\
|
|
|
|
|
\vshD{\tau}lm\left(\uvec r\right) & =\left(\vsh{\tau}lm\left(\uvec r\right)\right)^{*}=\left(-1\right)^{m}\vsh{\tau}l{-m}\left(\uvec r\right).
|
|
|
|
|
\end{align*}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
2019-07-28 23:39:56 +03:00
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\begin_layout Standard
|
2019-08-01 11:01:04 +03:00
|
|
|
|
The convention for VSWFs used here is the same as in
|
|
|
|
|
\begin_inset CommandInset citation
|
|
|
|
|
LatexCommand cite
|
|
|
|
|
key "kristensson_spherical_2014"
|
|
|
|
|
literal "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
; over other conventions used elsewhere in literature, it has several fundamenta
|
|
|
|
|
l advantages – most importantly, the translation operators introduced later
|
2019-07-28 23:39:56 +03:00
|
|
|
|
in eq.
|
|
|
|
|
|
|
|
|
|
\begin_inset CommandInset ref
|
2019-08-04 07:35:02 +03:00
|
|
|
|
LatexCommand eqref
|
|
|
|
|
reference "eq:reqular vswf coefficient vector translation"
|
2019-07-28 23:39:56 +03:00
|
|
|
|
plural "false"
|
|
|
|
|
caps "false"
|
|
|
|
|
noprefix "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
are unitary, and it gives the simplest possible expressions for power transport
|
|
|
|
|
and cross sections without additional
|
|
|
|
|
\begin_inset Formula $l,m$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
-dependent factors (for that reason, we also call our VSWFs as
|
|
|
|
|
\emph on
|
|
|
|
|
power-normalised
|
|
|
|
|
\emph default
|
|
|
|
|
).
|
|
|
|
|
Power-normalisation and unitary translation operators are possible to achieve
|
|
|
|
|
also with real spherical harmonics – such a convention is used in
|
2019-07-01 14:50:46 +03:00
|
|
|
|
\begin_inset CommandInset citation
|
|
|
|
|
LatexCommand cite
|
|
|
|
|
key "kristensson_scattering_2016"
|
2019-07-28 23:39:56 +03:00
|
|
|
|
literal "false"
|
2019-07-01 14:50:46 +03:00
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
.
|
|
|
|
|
\end_layout
|
|
|
|
|
|
2019-07-28 23:39:56 +03:00
|
|
|
|
\begin_layout Standard
|
2019-07-29 10:14:08 +03:00
|
|
|
|
\begin_inset Note Note
|
|
|
|
|
status open
|
|
|
|
|
|
|
|
|
|
\begin_layout Plain Layout
|
2019-07-28 23:39:56 +03:00
|
|
|
|
Its solutions (TODO under which conditions? What vector space do the SVWFs
|
|
|
|
|
actually span? Check Comment 9.2 and Appendix f.9.1 in Kristensson)
|
2019-07-01 14:50:46 +03:00
|
|
|
|
\end_layout
|
|
|
|
|
|
2019-07-29 10:14:08 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\end_layout
|
|
|
|
|
|
2019-07-01 14:50:46 +03:00
|
|
|
|
\begin_layout Standard
|
|
|
|
|
\begin_inset Note Note
|
|
|
|
|
status open
|
|
|
|
|
|
|
|
|
|
\begin_layout Plain Layout
|
|
|
|
|
TODO small note about cartesian multipoles, anapoles etc.
|
|
|
|
|
(There should be some comparing paper that the Russians at META 2018 mentioned.)
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\begin_layout Subsubsection
|
|
|
|
|
T-matrix definition
|
|
|
|
|
\end_layout
|
|
|
|
|
|
2019-07-29 10:14:08 +03:00
|
|
|
|
\begin_layout Standard
|
|
|
|
|
The regular VSWFs
|
|
|
|
|
\begin_inset Formula $\vswfrtlm{\tau}lm\left(k\vect r\right)$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-08-06 23:43:01 +03:00
|
|
|
|
would constitute a basis for solutions of the Helmholtz equation
|
2019-07-29 10:14:08 +03:00
|
|
|
|
\begin_inset CommandInset ref
|
2019-07-31 17:52:58 +03:00
|
|
|
|
LatexCommand eqref
|
2019-07-29 10:14:08 +03:00
|
|
|
|
reference "eq:Helmholtz eq"
|
|
|
|
|
plural "false"
|
|
|
|
|
caps "false"
|
|
|
|
|
noprefix "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
inside a ball
|
2020-06-07 16:30:15 +03:00
|
|
|
|
\begin_inset Formula $\openball{R^{>}}{\vect0}$
|
2019-07-29 10:14:08 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
with radius
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\begin_inset Formula $R^{>}$
|
2019-07-29 10:14:08 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-08-06 23:43:01 +03:00
|
|
|
|
and center in the origin, were it filled with homogeneous isotropic medium;
|
|
|
|
|
however, if the equation is not guaranteed to hold inside a smaller ball
|
|
|
|
|
|
2020-06-07 16:30:15 +03:00
|
|
|
|
\begin_inset Formula $\closedball{R^{<}}{\vect0}$
|
2019-07-29 10:14:08 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
around the origin (typically due to presence of a scatterer), one has to
|
|
|
|
|
add the outgoing VSWFs
|
2019-11-12 12:23:46 +02:00
|
|
|
|
\begin_inset Formula $\vswfouttlm{\tau}lm\left(\kappa\vect r\right)$
|
2019-07-29 10:14:08 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
to have a complete basis of the solutions in the volume
|
2020-06-07 16:30:15 +03:00
|
|
|
|
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect0}=\openball{R^{>}}{\vect0}\setminus\closedball{R^{<}}{\vect0}$
|
2019-07-29 10:14:08 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
.
|
|
|
|
|
\begin_inset Note Note
|
|
|
|
|
status open
|
|
|
|
|
|
|
|
|
|
\begin_layout Plain Layout
|
|
|
|
|
Vnitřní koule uzavřená? Jak se řekne mezikulí anglicky?
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
|
The single-particle scattering problem at frequency
|
|
|
|
|
\begin_inset Formula $\omega$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
can be posed as follows: Let a scatterer be enclosed inside the ball
|
2020-06-16 13:15:31 +03:00
|
|
|
|
\begin_inset Formula $\closedball{R^{<}}{\vect0}$
|
2019-07-29 10:14:08 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
and let the whole volume
|
2020-06-16 13:15:31 +03:00
|
|
|
|
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect0}$
|
2019-07-29 10:14:08 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
be filled with a homogeneous isotropic medium with wave number
|
2019-08-07 15:20:45 +03:00
|
|
|
|
\begin_inset Formula $\kappa\left(\omega\right)$
|
2019-07-29 10:14:08 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
.
|
2019-08-06 10:16:53 +03:00
|
|
|
|
Inside
|
2020-06-16 13:15:31 +03:00
|
|
|
|
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect0}$
|
2019-08-06 10:16:53 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
, the electric field can be expanded as
|
2019-07-29 10:14:08 +03:00
|
|
|
|
\begin_inset Note Note
|
|
|
|
|
status open
|
|
|
|
|
|
|
|
|
|
\begin_layout Plain Layout
|
|
|
|
|
doplnit frekvence a polohy
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset Formula
|
2019-07-29 10:51:43 +03:00
|
|
|
|
\begin{equation}
|
2019-08-07 15:20:45 +03:00
|
|
|
|
\vect E\left(\omega,\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\left(\rcoefftlm{\tau}lm\vswfrtlm{\tau}lm\left(\kappa\vect r\right)+\outcoefftlm{\tau}lm\vswfouttlm{\tau}lm\left(\kappa\vect r\right)\right).\label{eq:E field expansion}
|
2019-07-29 10:51:43 +03:00
|
|
|
|
\end{equation}
|
2019-07-29 10:14:08 +03:00
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-08-07 15:20:45 +03:00
|
|
|
|
If there were no scatterer and
|
2020-06-16 13:15:31 +03:00
|
|
|
|
\begin_inset Formula $\closedball{R^{<}}{\vect0}$
|
2019-07-29 10:14:08 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-08-07 15:20:45 +03:00
|
|
|
|
were filled with the same homogeneous medium, the part with the outgoing
|
2019-07-29 10:14:08 +03:00
|
|
|
|
VSWFs would vanish and only the part
|
|
|
|
|
\begin_inset Formula $\vect E_{\mathrm{inc}}=\sum_{\tau lm}\rcoefftlm{\tau}lm\vswfrtlm{\tau}lm$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
due to sources outside
|
2020-06-16 13:15:31 +03:00
|
|
|
|
\begin_inset Formula $\openball{R^{>}}{\vect0}$
|
2019-07-29 10:14:08 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
would remain.
|
|
|
|
|
Let us assume that the
|
|
|
|
|
\begin_inset Quotes eld
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
driving field
|
|
|
|
|
\begin_inset Quotes erd
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
is given, so that presence of the scatterer does not affect
|
|
|
|
|
\begin_inset Formula $\vect E_{\mathrm{inc}}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
and is fully manifested in the latter part,
|
|
|
|
|
\begin_inset Formula $\vect E_{\mathrm{scat}}=\sum_{\tau lm}\outcoefftlm{\tau}lm\vswfouttlm{\tau}lm$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
.
|
2019-08-07 15:20:45 +03:00
|
|
|
|
We also assume that the scatterer is made of optically linear materials
|
|
|
|
|
and hence reacts to the incident field in a linear manner.
|
2019-07-29 10:14:08 +03:00
|
|
|
|
This gives a linearity constraint between the expansion coefficients
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\outcoefftlm{\tau}lm=\sum_{\tau'l'm'}T_{\tau lm}^{\tau'l'm'}\rcoefftlm{\tau'}{l'}{m'}\label{eq:T-matrix definition}
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
where the
|
|
|
|
|
\begin_inset Formula $T_{\tau lm}^{\tau'l'm'}=T_{\tau lm}^{\tau'l'm'}\left(\omega\right)$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
are the elements of the
|
|
|
|
|
\emph on
|
|
|
|
|
transition matrix,
|
|
|
|
|
\emph default
|
|
|
|
|
a.k.a.
|
|
|
|
|
|
|
|
|
|
\begin_inset Formula $T$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
-matrix.
|
|
|
|
|
It completely describes the scattering properties of a linear scatterer,
|
|
|
|
|
so with the knowledge of the
|
|
|
|
|
\begin_inset Formula $T$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-11-12 12:23:46 +02:00
|
|
|
|
-matrix we can solve the single-particle scattering problem simply by substituti
|
2019-08-07 15:20:45 +03:00
|
|
|
|
ng appropriate expansion coefficients
|
2019-07-29 10:14:08 +03:00
|
|
|
|
\begin_inset Formula $\rcoefftlm{\tau'}{l'}{m'}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
of the driving field into
|
|
|
|
|
\begin_inset CommandInset ref
|
2019-07-31 17:52:58 +03:00
|
|
|
|
LatexCommand eqref
|
2019-07-29 10:14:08 +03:00
|
|
|
|
reference "eq:T-matrix definition"
|
|
|
|
|
plural "false"
|
|
|
|
|
caps "false"
|
|
|
|
|
noprefix "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
.
|
2019-07-29 12:41:02 +03:00
|
|
|
|
The outgoing VSWF expansion coefficients
|
|
|
|
|
\begin_inset Formula $\outcoefftlm{\tau}lm$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-07-31 17:52:58 +03:00
|
|
|
|
are the effective induced electric (
|
2019-08-01 04:38:51 +03:00
|
|
|
|
\begin_inset Formula $\tau=2$
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
) and magnetic (
|
2019-08-01 04:38:51 +03:00
|
|
|
|
\begin_inset Formula $\tau=1$
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-08-01 04:38:51 +03:00
|
|
|
|
) multipole polarisation amplitudes of the scatterer, and this is why we
|
2019-08-07 15:20:45 +03:00
|
|
|
|
sometimes refer to the corresponding VSWFs as to the electric and magnetic
|
|
|
|
|
VSWFs, respectively.
|
2019-08-01 04:38:51 +03:00
|
|
|
|
|
|
|
|
|
\begin_inset Note Note
|
|
|
|
|
status open
|
|
|
|
|
|
|
|
|
|
\begin_layout Plain Layout
|
|
|
|
|
TODO mention the pseudovector character of magnetic VSWFs.
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
2019-07-29 10:14:08 +03:00
|
|
|
|
\end_layout
|
|
|
|
|
|
2019-07-29 10:51:43 +03:00
|
|
|
|
\begin_layout Standard
|
|
|
|
|
\begin_inset Note Note
|
|
|
|
|
status open
|
|
|
|
|
|
|
|
|
|
\begin_layout Plain Layout
|
|
|
|
|
TOOD H-field expansion here?
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\end_layout
|
|
|
|
|
|
2019-07-29 10:14:08 +03:00
|
|
|
|
\begin_layout Standard
|
|
|
|
|
\begin_inset Formula $T$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
-matrices of particles with certain simple geometries (most famously spherical)
|
2019-08-01 11:15:13 +03:00
|
|
|
|
can be obtained analytically
|
|
|
|
|
\begin_inset CommandInset citation
|
|
|
|
|
LatexCommand cite
|
|
|
|
|
key "kristensson_scattering_2016,mie_beitrage_1908"
|
|
|
|
|
literal "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-11-17 21:26:11 +02:00
|
|
|
|
; for particles with smooth surfaces one can find them numerically using
|
|
|
|
|
the
|
|
|
|
|
\emph on
|
|
|
|
|
null-field method
|
|
|
|
|
\emph default
|
|
|
|
|
|
|
|
|
|
\begin_inset CommandInset citation
|
|
|
|
|
LatexCommand cite
|
|
|
|
|
key "waterman_new_1969,waterman_symmetry_1971,kristensson_scattering_2016"
|
|
|
|
|
literal "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
which works well in the most typical cases, but for less common parameter
|
|
|
|
|
ranges (such as concave shapes, extreme values of aspect ratios or relative
|
|
|
|
|
refractive index) they might suffer from serious numerical instabilities
|
|
|
|
|
|
|
|
|
|
\begin_inset CommandInset citation
|
|
|
|
|
LatexCommand cite
|
|
|
|
|
after "Sect. 5.8.4"
|
|
|
|
|
key "mishchenko_scattering_2002"
|
|
|
|
|
literal "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
.
|
2020-06-16 13:15:31 +03:00
|
|
|
|
In general, elements of the
|
|
|
|
|
\begin_inset Formula $T$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
-matrix can be obtained by simulating scattering of a regular spherical
|
|
|
|
|
wave
|
2019-11-12 12:23:46 +02:00
|
|
|
|
\begin_inset Formula $\vswfrtlm{\tau}lm$
|
2019-07-29 10:14:08 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
and projecting the scattered fields (or induced currents, depending on
|
|
|
|
|
the method) onto the outgoing VSWFs
|
2019-11-12 12:23:46 +02:00
|
|
|
|
\begin_inset Formula $\vswfouttlm{\tau'}{l'}{m'}$
|
2019-07-29 10:14:08 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
.
|
|
|
|
|
In practice, one can compute only a finite number of elements with a cut-off
|
|
|
|
|
value
|
|
|
|
|
\begin_inset Formula $L$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
on the multipole degree,
|
|
|
|
|
\begin_inset Formula $l,l'\le L$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
, see below.
|
2019-11-17 21:26:11 +02:00
|
|
|
|
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
|
For the numerical evaluation of
|
2019-08-07 15:20:45 +03:00
|
|
|
|
\begin_inset Formula $T$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-11-17 21:26:11 +02:00
|
|
|
|
-matrices for simple axially symmetric scatterers in QPMS, we typically
|
|
|
|
|
use the null-field equations, and for more complicated scatterers we use
|
|
|
|
|
the
|
|
|
|
|
\family typewriter
|
|
|
|
|
scuff-tmatrix
|
|
|
|
|
\family default
|
|
|
|
|
tool from the free software SCUFF-EM suite
|
2019-08-01 11:01:04 +03:00
|
|
|
|
\begin_inset CommandInset citation
|
|
|
|
|
LatexCommand cite
|
|
|
|
|
key "reid_efficient_2015,SCUFF2"
|
|
|
|
|
literal "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
.
|
2020-06-16 13:15:31 +03:00
|
|
|
|
\begin_inset Foot
|
|
|
|
|
status open
|
|
|
|
|
|
|
|
|
|
\begin_layout Plain Layout
|
|
|
|
|
Note that the upstream versions of SCUFF-EM contain a bug that renders almost
|
2019-07-29 10:14:08 +03:00
|
|
|
|
all
|
|
|
|
|
\begin_inset Formula $T$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2020-06-16 13:15:31 +03:00
|
|
|
|
-matrix results wrong; we found and fixed the bug in our fork available
|
|
|
|
|
at
|
|
|
|
|
\begin_inset CommandInset href
|
|
|
|
|
LatexCommand href
|
|
|
|
|
target "https://github.com/texnokrates/scuff-em"
|
|
|
|
|
literal "false"
|
2019-08-06 23:43:01 +03:00
|
|
|
|
|
2020-06-16 13:15:31 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
in revision
|
|
|
|
|
\begin_inset CommandInset href
|
|
|
|
|
LatexCommand href
|
|
|
|
|
name "g78689f5"
|
|
|
|
|
target "https://github.com/texnokrates/scuff-em/commit/78689f5514072853aa5cad455ce15b3e024d163d"
|
|
|
|
|
literal "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
.
|
|
|
|
|
However, the
|
|
|
|
|
\begin_inset CommandInset href
|
|
|
|
|
LatexCommand href
|
|
|
|
|
name "bugfix"
|
|
|
|
|
target "https://github.com/HomerReid/scuff-em/pull/197"
|
|
|
|
|
literal "false"
|
2019-08-06 23:43:01 +03:00
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2020-06-16 13:15:31 +03:00
|
|
|
|
has not been merged into upstream by the time of writing this article.
|
2019-07-29 10:14:08 +03:00
|
|
|
|
|
2020-06-16 13:15:31 +03:00
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
2019-07-01 14:50:46 +03:00
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\begin_layout Subsubsection
|
|
|
|
|
T-matrix compactness, cutoff validity
|
|
|
|
|
\end_layout
|
|
|
|
|
|
2019-07-29 10:14:08 +03:00
|
|
|
|
\begin_layout Standard
|
|
|
|
|
The magnitude of the
|
|
|
|
|
\begin_inset Formula $T$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
-matrix elements depends heavily on the scatterer's size compared to the
|
|
|
|
|
wavelength.
|
2019-11-17 21:26:11 +02:00
|
|
|
|
Typically,
|
|
|
|
|
\begin_inset Foot
|
|
|
|
|
status open
|
|
|
|
|
|
|
|
|
|
\begin_layout Plain Layout
|
|
|
|
|
It has been proven that the
|
2019-07-29 10:14:08 +03:00
|
|
|
|
\begin_inset Formula $T$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-11-17 21:26:11 +02:00
|
|
|
|
-matrix of a bounded scatterer is a compact operator for
|
|
|
|
|
\emph on
|
|
|
|
|
acoustic
|
|
|
|
|
\emph default
|
|
|
|
|
scattering problems
|
2019-08-06 23:43:01 +03:00
|
|
|
|
\begin_inset CommandInset citation
|
|
|
|
|
LatexCommand cite
|
|
|
|
|
key "ganesh_convergence_2012"
|
|
|
|
|
literal "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-11-17 21:26:11 +02:00
|
|
|
|
.
|
|
|
|
|
While we conjecture that this holds also for bounded electromagnetic scatterers
|
|
|
|
|
, we are not aware of a definitive proof.
|
2019-08-06 23:43:01 +03:00
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-11-17 21:26:11 +02:00
|
|
|
|
from certain multipole degree onwards,
|
2019-07-29 10:14:08 +03:00
|
|
|
|
\begin_inset Formula $l,l'>L$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
, the elements of the
|
|
|
|
|
\begin_inset Formula $T$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
-matrix are negligible, so truncating the
|
|
|
|
|
\begin_inset Formula $T$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
-matrix at finite multipole degree
|
|
|
|
|
\begin_inset Formula $L$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-11-17 21:26:11 +02:00
|
|
|
|
gives a good approximation of the actual infinite-dimensional operator.
|
2019-07-29 10:14:08 +03:00
|
|
|
|
If the incident field is well-behaved, i.e.
|
|
|
|
|
the expansion coefficients
|
|
|
|
|
\begin_inset Formula $\rcoefftlm{\tau'}{l'}{m'}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
do not take excessive values for
|
|
|
|
|
\begin_inset Formula $l'>L$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
, the scattered field expansion coefficients
|
|
|
|
|
\begin_inset Formula $\outcoefftlm{\tau}lm$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
with
|
|
|
|
|
\begin_inset Formula $l>L$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
will also be negligible.
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
|
A rule of thumb to choose the
|
|
|
|
|
\begin_inset Formula $L$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
with desired
|
|
|
|
|
\begin_inset Formula $T$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
-matrix element accuracy
|
|
|
|
|
\begin_inset Formula $\delta$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-08-06 09:57:10 +03:00
|
|
|
|
can be obtained from the spherical Bessel function expansion around zero
|
2019-07-29 10:14:08 +03:00
|
|
|
|
|
2019-08-06 09:57:10 +03:00
|
|
|
|
\begin_inset CommandInset citation
|
|
|
|
|
LatexCommand cite
|
|
|
|
|
after "10.52.1"
|
|
|
|
|
key "NIST:DLMF"
|
|
|
|
|
literal "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
by requiring that
|
2019-08-06 23:43:01 +03:00
|
|
|
|
\begin_inset Formula $\delta\gg\left(nR\right)^{L}/\left(2L+1\right)!!$
|
2019-08-06 09:57:10 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
, where
|
|
|
|
|
\begin_inset Formula $R$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
is the scatterer radius and
|
|
|
|
|
\begin_inset Formula $n$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
its (maximum) refractive index.
|
|
|
|
|
\begin_inset Note Note
|
2019-08-06 10:16:53 +03:00
|
|
|
|
status collapsed
|
2019-08-06 09:57:10 +03:00
|
|
|
|
|
|
|
|
|
\begin_layout Plain Layout
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{align*}
|
|
|
|
|
\left(2n+1\right)!! & =\frac{\left(2n+1\right)!}{2^{n}n!},\\
|
|
|
|
|
\delta\gtrsim & \frac{R^{L}}{\left(2L+1\right)!!}=\frac{\left(2R\right)^{L}L!}{\left(2L+1\right)!}
|
|
|
|
|
\end{align*}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
Stirling
|
|
|
|
|
\begin_inset Formula $n!\approx\sqrt{2\pi n}\left(n/e\right)^{n}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
so
|
|
|
|
|
\begin_inset Newline newline
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{align*}
|
|
|
|
|
\delta & \gtrsim\left(2R\right)^{L}\frac{\sqrt{2\pi L}\left(\frac{L}{e}\right)^{L}}{\sqrt{2\pi\left(2L+1\right)}\left(\frac{2L+1}{e}\right)^{2L+1}}\\
|
|
|
|
|
\delta & \gtrsim\left(2R\right)^{L}\frac{\sqrt{L}\left(\frac{L}{e}\right)^{L}}{\sqrt{2L+1}\left(\frac{2L+1}{e}\right)^{2L+1}}\\
|
|
|
|
|
\log\delta & \gtrsim L\log2+L\log R+\frac{1}{2}\log L-\frac{1}{2}\log\left(2L+1\right)+L\log L-L\log e-\left(2L+1\right)\log\left(2L+1\right)+\left(2L+1\right)\log e\\
|
|
|
|
|
\log\delta & \gtrsim L\log2+L\log R+\left(L+\frac{1}{2}\right)\log L-\left(2L+\frac{3}{2}\right)\log\left(2L+1\right)+\left(L+1\right)\\
|
|
|
|
|
& >L\log2+L\log R+\left(L+\frac{1}{2}\right)\log L-\left(2L+\frac{3}{2}\right)\log\left(2L\right)+\left(L+1\right)\\
|
|
|
|
|
& =L\log2+L\log R-\left(L+1\right)\log L-\left(2L+\frac{3}{2}\right)\log\left(2\right)+\left(L+1\right)\\
|
|
|
|
|
& =L\log2+L\log R-\left(L+1\right)\log L-\left(2L+\frac{3}{2}\right)\log\left(2\right)+\left(L+1\right)
|
|
|
|
|
\end{align*}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
too complicated, watabout
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\[
|
|
|
|
|
\delta\gtrsim\left(2R\right)^{L}\frac{L^{L+1/2}e^{L}}{\left(2L\right)^{2L}}=\frac{R^{L}e^{L}}{2^{L}}L^{L+1/2}
|
|
|
|
|
\]
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\[
|
|
|
|
|
\log\delta\gtrsim L\log\frac{ReL}{2}
|
|
|
|
|
\]
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\[
|
|
|
|
|
\log\delta\gtrsim L\log\frac{ReL}{2}
|
|
|
|
|
\]
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
yäk
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
2019-07-29 10:14:08 +03:00
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\begin_layout Subsubsection
|
2019-07-29 10:51:43 +03:00
|
|
|
|
Power transport
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
|
For convenience, let us introduce a short-hand matrix notation for the expansion
|
|
|
|
|
coefficients and related quantities, so that we do not need to write the
|
|
|
|
|
indices explicitly; so for example, eq.
|
|
|
|
|
|
|
|
|
|
\begin_inset CommandInset ref
|
2019-07-31 17:52:58 +03:00
|
|
|
|
LatexCommand eqref
|
2019-07-29 10:51:43 +03:00
|
|
|
|
reference "eq:T-matrix definition"
|
|
|
|
|
plural "false"
|
|
|
|
|
caps "false"
|
|
|
|
|
noprefix "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
would be written as
|
|
|
|
|
\begin_inset Formula $\outcoeffp{}=T\rcoeffp{}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
, where
|
|
|
|
|
\begin_inset Formula $\rcoeffp{},\outcoeffp{}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
are column vectors with the expansion coefficients.
|
|
|
|
|
Transposed and complex-conjugated matrices are labeled with the
|
|
|
|
|
\begin_inset Formula $\dagger$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
superscript.
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
|
With this notation, we state an important result about power transport,
|
|
|
|
|
derivation of which can be found in
|
|
|
|
|
\begin_inset CommandInset citation
|
|
|
|
|
LatexCommand cite
|
|
|
|
|
after "sect. 7.3"
|
|
|
|
|
key "kristensson_scattering_2016"
|
|
|
|
|
literal "true"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
.
|
|
|
|
|
Let the field in
|
2019-08-06 23:43:01 +03:00
|
|
|
|
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}$
|
2019-07-29 10:51:43 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
have expansion as in
|
|
|
|
|
\begin_inset CommandInset ref
|
2019-07-31 17:52:58 +03:00
|
|
|
|
LatexCommand eqref
|
2019-07-29 10:51:43 +03:00
|
|
|
|
reference "eq:E field expansion"
|
|
|
|
|
plural "false"
|
|
|
|
|
caps "false"
|
|
|
|
|
noprefix "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
.
|
|
|
|
|
Then the net power transported from
|
2019-08-06 23:43:01 +03:00
|
|
|
|
\begin_inset Formula $\openball{R^{<}}{\vect 0}$
|
2019-07-29 10:51:43 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
to
|
2019-08-06 23:43:01 +03:00
|
|
|
|
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}$
|
2019-07-29 10:51:43 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-11-12 12:23:46 +02:00
|
|
|
|
by electromagnetic radiation is
|
2019-07-29 10:51:43 +03:00
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{equation}
|
2019-11-12 12:23:46 +02:00
|
|
|
|
P=\frac{1}{2\kappa^{2}\eta_{0}\eta}\left(\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)+\left\Vert \outcoeffp{}\right\Vert ^{2}\right)=\frac{1}{2\kappa^{2}\eta_{0}\eta}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}+\frac{\Tp{}^{\dagger}+\Tp{}}{2}\right)\rcoeffp{},\label{eq:Power transport}
|
2019-07-29 10:51:43 +03:00
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-11-12 12:23:46 +02:00
|
|
|
|
where
|
|
|
|
|
\begin_inset Formula $\eta_{0}=\sqrt{\mu_{0}/\varepsilon_{0}}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
and
|
|
|
|
|
\begin_inset Formula $\eta=\sqrt{\mu/\varepsilon}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
are wave impedance of vacuum and relative wave impedance of the medium
|
|
|
|
|
in
|
|
|
|
|
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
, respectively.
|
2020-06-16 13:15:31 +03:00
|
|
|
|
Here
|
2019-11-12 12:23:46 +02:00
|
|
|
|
\family roman
|
|
|
|
|
\series medium
|
|
|
|
|
\shape up
|
|
|
|
|
\size normal
|
|
|
|
|
\emph off
|
|
|
|
|
\nospellcheck off
|
|
|
|
|
\bar no
|
|
|
|
|
\strikeout off
|
|
|
|
|
\xout off
|
|
|
|
|
\uuline off
|
|
|
|
|
\uwave off
|
|
|
|
|
\noun off
|
|
|
|
|
\color none
|
|
|
|
|
|
|
|
|
|
\begin_inset Formula $P$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
is well-defined only when
|
2019-11-17 21:26:11 +02:00
|
|
|
|
\begin_inset Formula $\kappa^{2}\eta$
|
2019-11-12 12:23:46 +02:00
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
is real.
|
|
|
|
|
|
|
|
|
|
\family default
|
|
|
|
|
\series default
|
|
|
|
|
\shape default
|
|
|
|
|
\size default
|
|
|
|
|
\emph default
|
|
|
|
|
\nospellcheck default
|
|
|
|
|
\bar default
|
|
|
|
|
\strikeout default
|
|
|
|
|
\xout default
|
|
|
|
|
\uuline default
|
|
|
|
|
\uwave default
|
|
|
|
|
\noun default
|
|
|
|
|
\color inherit
|
|
|
|
|
In realistic scattering setups, power is transferred by radiation into
|
|
|
|
|
|
2019-08-06 23:43:01 +03:00
|
|
|
|
\begin_inset Formula $\openball{R^{<}}{\vect 0}$
|
2019-07-29 10:51:43 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
and absorbed by the enclosed scatterer, so
|
|
|
|
|
\begin_inset Formula $P$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
is negative and its magnitude equals to power absorbed by the scatterer.
|
2019-11-17 21:26:11 +02:00
|
|
|
|
In other words, the hermitian operator
|
|
|
|
|
\begin_inset Formula $\Pi=\Tp{}^{\dagger}\Tp{}+\left(\Tp{}^{\dagger}+\Tp{}\right)/2$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
must be negative (semi-)definite for a particle without gain.
|
|
|
|
|
This provides a simple but very useful sanity check on the numerically
|
|
|
|
|
obtained
|
|
|
|
|
\begin_inset Formula $T$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
-matrices: non-negligible positive eigenvalues of
|
|
|
|
|
\begin_inset Formula $\Pi$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
indicate either too drastic multipole truncation or another problem with
|
|
|
|
|
the
|
|
|
|
|
\begin_inset Formula $T$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
-matrix.
|
2019-07-29 10:51:43 +03:00
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\begin_layout Subsubsection
|
|
|
|
|
Plane wave expansion
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
|
In many scattering problems considered in practice, the driving field is
|
2019-08-07 15:20:45 +03:00
|
|
|
|
at least approximately a plane wave.
|
2019-07-29 10:51:43 +03:00
|
|
|
|
A transversal (
|
2019-08-07 15:20:45 +03:00
|
|
|
|
\begin_inset Formula $\uvec k\cdot\vect E_{0}=0$
|
2019-07-29 10:51:43 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
) plane wave propagating in direction
|
|
|
|
|
\begin_inset Formula $\uvec k$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
with (complex) amplitude
|
|
|
|
|
\begin_inset Formula $\vect E_{0}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-08-01 11:01:04 +03:00
|
|
|
|
can be expanded into regular VSWFs
|
|
|
|
|
\begin_inset CommandInset citation
|
|
|
|
|
LatexCommand cite
|
2019-08-07 15:20:45 +03:00
|
|
|
|
after "7.7.1"
|
2019-08-01 11:01:04 +03:00
|
|
|
|
key "kristensson_scattering_2016"
|
|
|
|
|
literal "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
as
|
2019-07-29 10:51:43 +03:00
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\[
|
2019-08-07 15:20:45 +03:00
|
|
|
|
\vect E_{\mathrm{PW}}\left(\vect r,\omega\right)=\vect E_{0}e^{i\kappa\uvec k\cdot\vect r}=\sum_{\tau,l,m}\rcoeffptlm{}{\tau}lm\left(\uvec k,\vect E_{0}\right)\vswfrtlm{\tau}lm\left(\kappa\vect r\right),
|
2019-07-29 10:51:43 +03:00
|
|
|
|
\]
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2020-03-15 21:15:42 +02:00
|
|
|
|
where the expansion coefficients are obtained from the scalar products of
|
|
|
|
|
the amplitude and corresponding dual vector spherical harmonics
|
2019-07-29 10:51:43 +03:00
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{eqnarray}
|
2019-10-13 17:54:48 +03:00
|
|
|
|
\rcoeffptlm{}1lm\left(\uvec k,\vect E_{0}\right) & = & 4\pi i^{l}\vshD 1lm\left(\uvec k\right)\cdot\vect E_{0},\nonumber \\
|
|
|
|
|
\rcoeffptlm{}2lm\left(\uvec k,\vect E_{0}\right) & = & -4\pi i^{l+1}\vshD 2lm\left(\uvec k\right)\cdot\vect E_{0}.\label{eq:plane wave expansion}
|
2019-07-29 10:51:43 +03:00
|
|
|
|
\end{eqnarray}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\end_layout
|
|
|
|
|
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\begin_layout Subsubsection
|
2019-07-29 10:51:43 +03:00
|
|
|
|
Cross-sections (single-particle)
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
|
With the
|
|
|
|
|
\begin_inset Formula $T$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
-matrix and expansion coefficients of plane waves in hand, we can state
|
|
|
|
|
the expressions for cross-sections of a single scatterer.
|
|
|
|
|
Assuming a non-lossy background medium, extinction, scattering and absorption
|
|
|
|
|
cross sections of a single scatterer irradiated by a plane wave propagating
|
|
|
|
|
in direction
|
|
|
|
|
\begin_inset Formula $\uvec k$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
and (complex) amplitude
|
|
|
|
|
\begin_inset Formula $\vect E_{0}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
are
|
|
|
|
|
\begin_inset CommandInset citation
|
|
|
|
|
LatexCommand cite
|
|
|
|
|
after "sect. 7.8.2"
|
|
|
|
|
key "kristensson_scattering_2016"
|
|
|
|
|
literal "true"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{eqnarray}
|
2019-08-07 15:20:45 +03:00
|
|
|
|
\sigma_{\mathrm{ext}}\left(\uvec k\right) & = & -\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)=-\frac{1}{2\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}+\Tp{}^{\dagger}\right)\rcoeffp{},\label{eq:extincion CS single}\\
|
|
|
|
|
\sigma_{\mathrm{scat}}\left(\uvec k\right) & = & \frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\left\Vert \outcoeffp{}\right\Vert ^{2}=\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}\right)\rcoeffp{},\label{eq:scattering CS single}\\
|
|
|
|
|
\sigma_{\mathrm{abs}}\left(\uvec k\right) & = & \sigma_{\mathrm{ext}}\left(\uvec k\right)-\sigma_{\mathrm{scat}}\left(\uvec k\right)=-\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\left(\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)+\left\Vert \outcoeffp{}\right\Vert ^{2}\right)\nonumber \\
|
2019-11-07 00:29:41 +02:00
|
|
|
|
& & =-\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}+\frac{\Tp{}^{\dagger}+\Tp{}}{2}\right)\rcoeffp{},\label{eq:absorption CS single}
|
2019-07-29 10:51:43 +03:00
|
|
|
|
\end{eqnarray}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
where
|
|
|
|
|
\begin_inset Formula $\rcoeffp{}=\rcoeffp{}\left(\vect k,\vect E_{0}\right)$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
is the vector of plane wave expansion coefficients as in
|
|
|
|
|
\begin_inset CommandInset ref
|
|
|
|
|
LatexCommand eqref
|
|
|
|
|
reference "eq:plane wave expansion"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
.
|
|
|
|
|
|
2019-07-29 10:14:08 +03:00
|
|
|
|
\end_layout
|
|
|
|
|
|
2019-07-01 14:50:46 +03:00
|
|
|
|
\begin_layout Subsection
|
|
|
|
|
Multiple scattering
|
2019-07-29 22:09:11 +03:00
|
|
|
|
\begin_inset CommandInset label
|
|
|
|
|
LatexCommand label
|
|
|
|
|
name "subsec:Multiple-scattering"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
2019-07-01 14:50:46 +03:00
|
|
|
|
\end_layout
|
|
|
|
|
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\begin_layout Standard
|
|
|
|
|
If the system consists of multiple scatterers, the EM fields around each
|
|
|
|
|
one can be expanded in analogous way.
|
|
|
|
|
Let
|
|
|
|
|
\begin_inset Formula $\mathcal{P}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
be an index set labeling the scatterers.
|
2019-08-06 23:43:01 +03:00
|
|
|
|
We enclose each scatterer in a closed ball
|
|
|
|
|
\begin_inset Formula $\closedball{R_{p}}{\vect r_{p}}$
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
such that the balls do not touch,
|
2019-08-06 23:43:01 +03:00
|
|
|
|
\begin_inset Formula $\closedball{R_{p}}{\vect r_{p}}\cap\closedball{R_{q}}{\vect r_{q}}=\emptyset;p,q\in\mathcal{P}$
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-08-07 15:20:45 +03:00
|
|
|
|
, so there is a non-empty spherical shell
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\begin_inset Note Note
|
|
|
|
|
status open
|
|
|
|
|
|
|
|
|
|
\begin_layout Plain Layout
|
2019-08-06 23:43:01 +03:00
|
|
|
|
jaksetometuje?
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-08-06 23:43:01 +03:00
|
|
|
|
|
|
|
|
|
\begin_inset Formula $\mezikuli{R_{p}}{R_{p}^{>}}{\vect r_{p}}$
|
|
|
|
|
\end_inset
|
2019-07-29 12:41:02 +03:00
|
|
|
|
|
2019-08-06 23:43:01 +03:00
|
|
|
|
around each one that contains only the background medium without any scatterers
|
2019-08-07 15:20:45 +03:00
|
|
|
|
; we assume that all the relevant volume outside
|
2019-08-06 23:43:01 +03:00
|
|
|
|
\begin_inset Formula $\bigcap_{p\in\mathcal{P}}\closedball{R_{p}}{\vect r_{p}}$
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-08-07 15:20:45 +03:00
|
|
|
|
is filled with the same background medium.
|
2019-08-06 23:43:01 +03:00
|
|
|
|
Then the EM field inside each
|
|
|
|
|
\begin_inset Formula $\mezikuli{R_{p}}{R_{p}^{>}}{\vect r_{p}}$
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-08-06 23:43:01 +03:00
|
|
|
|
can be expanded in a way similar to
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\begin_inset CommandInset ref
|
2019-07-29 15:24:16 +03:00
|
|
|
|
LatexCommand eqref
|
2019-07-29 12:41:02 +03:00
|
|
|
|
reference "eq:E field expansion"
|
|
|
|
|
plural "false"
|
|
|
|
|
caps "false"
|
|
|
|
|
noprefix "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
, using VSWFs with origins shifted to the centre of the volume:
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{align}
|
2019-08-07 15:20:45 +03:00
|
|
|
|
\vect E\left(\omega,\vect r\right) & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\left(\rcoeffptlm p{\tau}lm\vswfrtlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{p}\right)\right)+\outcoeffptlm p{\tau}lm\vswfouttlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{p}\right)\right)\right),\label{eq:E field expansion multiparticle}\\
|
2019-08-06 23:43:01 +03:00
|
|
|
|
& \vect r\in\mezikuli{R_{p}}{R_{p}^{>}}{\vect r_{p}}.\nonumber
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\end{align}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
Unlike the single scatterer case, the incident field coefficients
|
|
|
|
|
\begin_inset Formula $\rcoeffptlm p{\tau}lm$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
here are not only due to some external driving field that the particle
|
|
|
|
|
does not influence but they also contain the contributions of fields scattered
|
|
|
|
|
from
|
|
|
|
|
\emph on
|
|
|
|
|
all other scatterers
|
|
|
|
|
\emph default
|
|
|
|
|
:
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\rcoeffp p=\rcoeffincp p+\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\tropsp pq\outcoeffp q\label{eq:particle total incident field coefficient a}
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
where
|
|
|
|
|
\begin_inset Formula $\rcoeffincp p$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
represents the part due to the external driving that the scatterers can
|
|
|
|
|
not influence, and
|
|
|
|
|
\begin_inset Formula $\tropsp pq$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
is a
|
|
|
|
|
\emph on
|
|
|
|
|
translation operator
|
|
|
|
|
\emph default
|
|
|
|
|
defined below in Sec.
|
|
|
|
|
|
|
|
|
|
\begin_inset CommandInset ref
|
|
|
|
|
LatexCommand ref
|
|
|
|
|
reference "subsec:Translation-operator"
|
|
|
|
|
plural "false"
|
|
|
|
|
caps "false"
|
|
|
|
|
noprefix "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
, that contains the re-expansion coefficients of the outgoing waves in origin
|
|
|
|
|
|
|
|
|
|
\begin_inset Formula $\vect r_{q}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
into regular waves in origin
|
|
|
|
|
\begin_inset Formula $\vect r_{p}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
.
|
2019-07-29 15:24:16 +03:00
|
|
|
|
For each scatterer, we also have its
|
|
|
|
|
\begin_inset Formula $T$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
-matrix relation as in
|
|
|
|
|
\begin_inset CommandInset ref
|
|
|
|
|
LatexCommand eqref
|
|
|
|
|
reference "eq:T-matrix definition"
|
|
|
|
|
plural "false"
|
|
|
|
|
caps "false"
|
|
|
|
|
noprefix "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\[
|
|
|
|
|
\outcoeffp q=T_{q}\rcoeffp q.
|
|
|
|
|
\]
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
Together with
|
|
|
|
|
\begin_inset CommandInset ref
|
|
|
|
|
LatexCommand eqref
|
|
|
|
|
reference "eq:particle total incident field coefficient a"
|
|
|
|
|
plural "false"
|
|
|
|
|
caps "false"
|
|
|
|
|
noprefix "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
, this gives rise to a set of linear equations
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\outcoeffp p-T_{p}\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\tropsp pq\outcoeffp q=T_{p}\rcoeffincp p,\quad p\in\mathcal{P}\label{eq:Multiple-scattering problem}
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
which defines the multiple-scattering problem.
|
|
|
|
|
If all the
|
|
|
|
|
\begin_inset Formula $p,q$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
-indexed vectors and matrices (note that without truncation, they are infinite-d
|
|
|
|
|
imensional) are arranged into blocks of even larger vectors and matrices,
|
|
|
|
|
this can be written in a short-hand form
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\left(I-T\trops\right)\outcoeff=T\rcoeffinc\label{eq:Multiple-scattering problem block form}
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
where
|
|
|
|
|
\begin_inset Formula $I$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-07-30 08:48:57 +03:00
|
|
|
|
is the identity matrix,
|
2019-07-29 15:24:16 +03:00
|
|
|
|
\begin_inset Formula $T$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-11-12 12:23:46 +02:00
|
|
|
|
is a block-diagonal matrix containing all the individual
|
2019-07-29 15:24:16 +03:00
|
|
|
|
\begin_inset Formula $T$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-07-30 08:48:57 +03:00
|
|
|
|
-matrices, and
|
|
|
|
|
\begin_inset Formula $\trops$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
contains the individual
|
|
|
|
|
\begin_inset Formula $\tropsp pq$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
matrices as the off-diagonal blocks, whereas the diagonal blocks are set
|
|
|
|
|
to zeros.
|
2020-06-07 16:30:15 +03:00
|
|
|
|
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
|
We note that eq.
|
|
|
|
|
|
|
|
|
|
\begin_inset CommandInset ref
|
|
|
|
|
LatexCommand eqref
|
|
|
|
|
reference "eq:Multiple-scattering problem block form"
|
|
|
|
|
plural "false"
|
|
|
|
|
caps "false"
|
|
|
|
|
noprefix "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
with zero right-hand side describes the normal modes of the system; the
|
|
|
|
|
methods mentioned later in Section
|
|
|
|
|
\begin_inset CommandInset ref
|
|
|
|
|
LatexCommand eqref
|
|
|
|
|
reference "sec:Infinite"
|
|
|
|
|
plural "false"
|
|
|
|
|
caps "false"
|
|
|
|
|
noprefix "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
for solving the band structure of a periodic system can be used as well
|
|
|
|
|
for finding the resonant frequencies of a finite system.
|
2019-07-29 15:24:16 +03:00
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
|
In practice, the multiple-scattering problem is solved in its truncated
|
|
|
|
|
form, in which all the
|
|
|
|
|
\begin_inset Formula $l$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
-indices related to a given scatterer
|
|
|
|
|
\begin_inset Formula $p$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
are truncated as
|
|
|
|
|
\begin_inset Formula $l\le L_{p}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-08-06 10:16:53 +03:00
|
|
|
|
, leaving only
|
2019-07-29 15:24:16 +03:00
|
|
|
|
\begin_inset Formula $N_{p}=2L_{p}\left(L_{p}+2\right)$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
different
|
|
|
|
|
\begin_inset Formula $\tau lm$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-11-12 12:23:46 +02:00
|
|
|
|
-multi-indices left.
|
2019-07-29 15:24:16 +03:00
|
|
|
|
The truncation degree can vary for different scatterers (e.g.
|
2019-11-12 12:23:46 +02:00
|
|
|
|
\begin_inset space \space{}
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
due to different physical sizes), so the truncated block
|
2019-08-07 15:20:45 +03:00
|
|
|
|
\begin_inset Formula $\left[\tropsp pq\right]_{l_{q}\le L_{q};l_{p}\le L_{q}}$
|
2019-07-29 15:24:16 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
has shape
|
|
|
|
|
\begin_inset Formula $N_{p}\times N_{q}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
, not necessarily square.
|
|
|
|
|
|
|
|
|
|
\begin_inset Note Note
|
|
|
|
|
status open
|
|
|
|
|
|
|
|
|
|
\begin_layout Plain Layout
|
|
|
|
|
Such truncation of the translation operator
|
|
|
|
|
\begin_inset Formula $\tropsp pq$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
is justified by the fact on the left, TODO
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
|
If no other type of truncation is done, there remain
|
|
|
|
|
\begin_inset Formula $2L_{p}\left(L_{p}+2\right)$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
different
|
|
|
|
|
\begin_inset Formula $\tau lm$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-11-12 12:23:46 +02:00
|
|
|
|
-multi-indices for the
|
2019-07-29 15:24:16 +03:00
|
|
|
|
\begin_inset Formula $p$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
-th scatterer, so that the truncated version of the matrix
|
|
|
|
|
\begin_inset Formula $\left(I-T\trops\right)$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
is a square matrix with
|
|
|
|
|
\begin_inset Formula $\left(\sum_{p\in\mathcal{P}}N_{p}\right)^{2}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
elements in total.
|
|
|
|
|
The truncated problem
|
|
|
|
|
\begin_inset CommandInset ref
|
|
|
|
|
LatexCommand eqref
|
|
|
|
|
reference "eq:Multiple-scattering problem block form"
|
|
|
|
|
plural "false"
|
|
|
|
|
caps "false"
|
|
|
|
|
noprefix "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-07-31 10:10:45 +03:00
|
|
|
|
can then be solved using standard numerical linear algebra methods (typically,
|
|
|
|
|
by LU factorisation of the
|
|
|
|
|
\begin_inset Formula $\left(I-T\trops\right)$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
matrix at a given frequency, and then solving with Gauss elimination for
|
|
|
|
|
as many different incident
|
|
|
|
|
\begin_inset Formula $\rcoeffinc$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
vectors as needed).
|
2019-07-29 15:24:16 +03:00
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
|
Alternatively, the multiple scattering problem can be formulated in terms
|
|
|
|
|
of the regular field expansion coefficients,
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{align*}
|
|
|
|
|
\rcoeffp p-\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\tropsp pqT_{q}\rcoeffp q & =\rcoeffincp p,\quad p\in\mathcal{P},\\
|
|
|
|
|
\left(I-\trops T\right)\rcoeff & =\rcoeffinc,
|
|
|
|
|
\end{align*}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
but this form is less suitable for numerical calculations due to the fact
|
|
|
|
|
that the regular VSWF expansion coefficients on both sides of the equation
|
|
|
|
|
are typically non-negligible even for large multipole degree
|
|
|
|
|
\begin_inset Formula $l$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-07-31 10:50:01 +03:00
|
|
|
|
, hence the truncation is not justified in this case.
|
2019-07-29 15:24:16 +03:00
|
|
|
|
|
|
|
|
|
\begin_inset Note Note
|
|
|
|
|
status open
|
|
|
|
|
|
|
|
|
|
\begin_layout Plain Layout
|
|
|
|
|
TODO less bulshit.
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\end_layout
|
|
|
|
|
|
2019-07-01 14:50:46 +03:00
|
|
|
|
\begin_layout Subsubsection
|
|
|
|
|
Translation operator
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\begin_inset CommandInset label
|
|
|
|
|
LatexCommand label
|
|
|
|
|
name "subsec:Translation-operator"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
|
Let
|
|
|
|
|
\begin_inset Formula $\vect r_{1},\vect r_{2}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
be two different origins; a regular VSWF with origin
|
|
|
|
|
\begin_inset Formula $\vect r_{1}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
can be always expanded in terms of regular VSWFs with origin
|
|
|
|
|
\begin_inset Formula $\vect r_{2}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
as follows:
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{equation}
|
2019-08-07 15:20:45 +03:00
|
|
|
|
\vswfrtlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{1}\right)\right)=\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(\kappa\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\vect r-\vect r_{2}\right),\label{eq:regular vswf translation}
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-08-06 10:16:53 +03:00
|
|
|
|
where an explicit formula for the regular translation operator
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\begin_inset Formula $\tropr$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
reads in eq.
|
|
|
|
|
|
|
|
|
|
\begin_inset CommandInset ref
|
|
|
|
|
LatexCommand eqref
|
|
|
|
|
reference "eq:translation operator"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
below.
|
|
|
|
|
For singular (outgoing) waves, the form of the expansion differs inside
|
|
|
|
|
and outside the ball
|
2019-08-06 23:43:01 +03:00
|
|
|
|
\begin_inset Formula $\closedball{\left\Vert \vect r_{2}-\vect r_{1}\right\Vert }{\vect r_{1}}$
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-08-06 23:43:01 +03:00
|
|
|
|
:
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{eqnarray}
|
2019-08-07 15:20:45 +03:00
|
|
|
|
\vswfouttlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{1}\right)\right) & = & \begin{cases}
|
|
|
|
|
\sum_{\tau'l'm'}\trops_{\tau lm;\tau'l'm'}\left(\kappa\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfouttlm{\tau'}{l'}{m'}\left(\kappa\left(\vect r-\vect r_{2}\right)\right), & \vect r\in\openball{\left\Vert \vect r_{2}-\vect r_{1}\right\Vert }{\vect r_{1}}\\
|
|
|
|
|
\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(\kappa\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\kappa\left(\vect r-\vect r_{2}\right)\right), & \vect r\notin\closedball{\left\Vert \vect r_{2}-\vect r_{1}\right\Vert }{\left|\vect r_{1}\right|}
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\end{cases},\label{eq:singular vswf translation}
|
|
|
|
|
\end{eqnarray}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
where the singular translation operator
|
|
|
|
|
\begin_inset Formula $\trops$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
has the same form as
|
|
|
|
|
\begin_inset Formula $\tropr$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
in
|
|
|
|
|
\begin_inset CommandInset ref
|
|
|
|
|
LatexCommand eqref
|
|
|
|
|
reference "eq:translation operator"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
except the regular spherical Bessel functions
|
|
|
|
|
\begin_inset Formula $j_{l}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
are replaced with spherical Hankel functions
|
|
|
|
|
\begin_inset Formula $h_{l}^{(1)}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
.
|
|
|
|
|
|
|
|
|
|
\begin_inset Note Note
|
|
|
|
|
status open
|
|
|
|
|
|
|
|
|
|
\begin_layout Plain Layout
|
|
|
|
|
TODO note about expansion exactly on the sphere.
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
|
As MSTMM deals most of the time with the
|
|
|
|
|
\emph on
|
|
|
|
|
expansion coefficients
|
|
|
|
|
\emph default
|
|
|
|
|
of fields
|
|
|
|
|
\begin_inset Formula $\rcoeffptlm p{\tau}lm,\outcoeffptlm p{\tau}lm$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
in different origins
|
|
|
|
|
\begin_inset Formula $\vect r_{p}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
rather than with the VSWFs directly, let us write down how
|
|
|
|
|
\emph on
|
|
|
|
|
they
|
|
|
|
|
\emph default
|
|
|
|
|
transform under translation.
|
2020-06-16 13:15:31 +03:00
|
|
|
|
We assume the field can be expressed in terms of regular waves everywhere,
|
|
|
|
|
and expand it in two different origins
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\begin_inset Formula $\vect r_{p},\vect r_{q}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\[
|
2019-08-07 15:20:45 +03:00
|
|
|
|
\vect E\left(\vect r,\omega\right)=\sum_{\tau,l,m}\rcoeffptlm p{\tau}lm\vswfrtlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{p}\right)\right)=\sum_{\tau',l',m'}\rcoeffptlm q{\tau'}{l'}{m'}\vswfrtlm{\tau}{'l'}{m'}\left(\kappa\left(\vect r-\vect r_{q}\right)\right).
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\]
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
Re-expanding the waves around
|
|
|
|
|
\begin_inset Formula $\vect r_{p}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
in terms of waves around
|
|
|
|
|
\begin_inset Formula $\vect r_{q}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
using
|
|
|
|
|
\begin_inset CommandInset ref
|
|
|
|
|
LatexCommand eqref
|
|
|
|
|
reference "eq:regular vswf translation"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\[
|
2019-08-07 15:20:45 +03:00
|
|
|
|
\vect E\left(\vect r,\omega\right)=\sum_{\tau,l,m}\rcoeffptlm p{\tau}lm\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(\kappa\left(\vect r_{q}-\vect r_{p}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\kappa\left(\vect r-\vect r_{q}\right)\right)
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\]
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
and comparing to the original expansion around
|
|
|
|
|
\begin_inset Formula $\vect r_{q}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
, we obtain
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{equation}
|
2019-08-07 15:20:45 +03:00
|
|
|
|
\rcoeffptlm q{\tau'}{l'}{m'}=\sum_{\tau,l,m}\tropr_{\tau lm;\tau'l'm'}\left(\kappa\left(\vect r_{q}-\vect r_{p}\right)\right)\rcoeffptlm p{\tau}lm.\label{eq:regular vswf coefficient translation}
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
For the sake of readability, we introduce a shorthand matrix form for
|
|
|
|
|
\begin_inset CommandInset ref
|
|
|
|
|
LatexCommand eqref
|
|
|
|
|
reference "eq:regular vswf coefficient translation"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\rcoeffp q=\troprp qp\rcoeffp p\label{eq:reqular vswf coefficient vector translation}
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-08-06 10:16:53 +03:00
|
|
|
|
(note the reversed indices
|
|
|
|
|
\begin_inset Note Note
|
|
|
|
|
status open
|
|
|
|
|
|
|
|
|
|
\begin_layout Plain Layout
|
|
|
|
|
; TODO redefine them in
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\begin_inset CommandInset ref
|
|
|
|
|
LatexCommand eqref
|
|
|
|
|
reference "eq:regular vswf translation"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
\begin_inset CommandInset ref
|
|
|
|
|
LatexCommand eqref
|
|
|
|
|
reference "eq:singular vswf translation"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-08-06 10:16:53 +03:00
|
|
|
|
?
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
) Similarly, if we had only outgoing waves in the original expansion around
|
2019-07-29 12:41:02 +03:00
|
|
|
|
|
|
|
|
|
\begin_inset Formula $\vect r_{p}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
, we would get
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\rcoeffp q=\tropsp qp\outcoeffp p\label{eq:singular to regular vswf coefficient vector translation}
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
for the expansion inside the ball
|
|
|
|
|
\begin_inset Formula $\openball{\left\Vert \vect r_{q}-\vect r_{p}\right\Vert }{\vect r_{p}}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset Note Note
|
|
|
|
|
status open
|
|
|
|
|
|
|
|
|
|
\begin_layout Plain Layout
|
|
|
|
|
CHECKME
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
and
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\outcoeffp q=\troprp qp\outcoeffp p\label{eq:singular to singular vswf coefficient vector translation-1}
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
outside.
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\begin_layout Standard
|
2019-08-03 14:11:33 +03:00
|
|
|
|
In our convention, the regular translation operator elements can be expressed
|
|
|
|
|
explicitly as
|
2020-06-05 10:59:41 +03:00
|
|
|
|
\begin_inset Note Note
|
|
|
|
|
status collapsed
|
|
|
|
|
|
|
|
|
|
\begin_layout Plain Layout
|
2019-08-03 14:11:33 +03:00
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{align}
|
|
|
|
|
\tropr_{\tau lm;\tau l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|}^{l+l'}C_{lm;l'm'}^{\lambda}\ush{\lambda}{m-m'}\left(\uvec d\right)j_{\lambda}\left(d\right),\nonumber \\
|
2020-06-05 10:59:41 +03:00
|
|
|
|
\tropr_{\tau lm;\tau'l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}D_{lm;l'm'}^{\lambda}\ush{\lambda}{m-m'}\left(\uvec d\right)j_{\lambda}\left(d\right),\quad\tau'\ne\tau,\label{eq:translation operator-1}
|
|
|
|
|
\end{align}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{align}
|
|
|
|
|
\tropr_{\tau lm;\tau'l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|+\left|\tau-\tau'\right|}^{l+l'}\tropcoeff_{\tau lm;\tau'l'm'}^{\lambda}\ush{\lambda}{m-m'}\left(\uvec d\right)j_{\lambda}\left(d\right),\label{eq:translation operator}
|
2019-08-03 14:11:33 +03:00
|
|
|
|
\end{align}
|
|
|
|
|
|
2019-07-31 11:43:24 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-08-03 14:11:33 +03:00
|
|
|
|
and analogously the elements of the singular operator
|
|
|
|
|
\begin_inset Formula $\trops$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
, having spherical Hankel functions (
|
|
|
|
|
\begin_inset Formula $h_{l}^{(1)}=j_{l}+iy_{l}$
|
2019-07-31 11:43:24 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
2020-06-16 13:15:31 +03:00
|
|
|
|
) in the radial part instead of the regular Bessel functions,
|
2020-06-05 10:59:41 +03:00
|
|
|
|
\begin_inset Note Note
|
|
|
|
|
status collapsed
|
|
|
|
|
|
|
|
|
|
\begin_layout Plain Layout
|
2019-08-03 14:11:33 +03:00
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{align}
|
|
|
|
|
\trops_{\tau lm;\tau l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|}^{l+l'}C_{lm;l'm'}^{\lambda}\ush{\lambda}{m-m'}\left(\uvec d\right)h_{\lambda}^{(1)}\left(d\right),\nonumber \\
|
2020-06-05 10:59:41 +03:00
|
|
|
|
\trops_{\tau lm;\tau'l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}D_{lm;l'm'}^{\lambda}\ush{\lambda}{m-m'}\left(\uvec d\right)h_{\lambda}^{(1)}\left(d\right),\quad\tau'\ne\tau,\label{eq:translation operator singular-1}
|
|
|
|
|
\end{align}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{align}
|
|
|
|
|
\trops_{\tau lm;\tau'l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|+\left|\tau-\tau'\right|}^{l+l'}\tropcoeff_{\tau lm;\tau'l'm'}^{\lambda}\ush{\lambda}{m-m'}\left(\uvec d\right)h_{\lambda}^{(1)}\left(d\right),\label{eq:translation operator singular}
|
2019-08-03 14:11:33 +03:00
|
|
|
|
\end{align}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-08-06 23:43:01 +03:00
|
|
|
|
where the constant factors in our convention read
|
|
|
|
|
\begin_inset Marginal
|
|
|
|
|
status open
|
|
|
|
|
|
|
|
|
|
\begin_layout Plain Layout
|
|
|
|
|
TODO check once again carefully for possible phase factors.
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
2019-07-31 11:43:24 +03:00
|
|
|
|
\begin_inset Note Note
|
2019-08-03 14:11:33 +03:00
|
|
|
|
status collapsed
|
2019-07-31 11:43:24 +03:00
|
|
|
|
|
|
|
|
|
\begin_layout Plain Layout
|
2019-08-03 14:11:33 +03:00
|
|
|
|
Original Kristensson's
|
|
|
|
|
\begin_inset Formula $C,D's$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
from F.7:
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{multline*}
|
|
|
|
|
C_{ml,m'l'}\left(\vect d\right)=\frac{\left(-1\right)^{m+m'}}{2}\sqrt{\frac{\varepsilon_{m}\varepsilon_{m'}}{4}}\sum_{\lambda=\left|l-l'\right|}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda}{2}}\left(2\lambda+1\right)\sqrt{\frac{\left(2l+1\right)\left(2l'+1\right)\left(\lambda-\left(m-m'\right)\right)!}{l\left(l+1\right)l'\left(l'+1\right)\left(\lambda+\left(m-m'\right)\right)!}}\times\\
|
|
|
|
|
\times\begin{pmatrix}l & l' & \lambda\\
|
|
|
|
|
0 & 0 & 0
|
|
|
|
|
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
|
|
|
|
|
m & -m' & m'-m
|
|
|
|
|
\end{pmatrix}\left(l\left(l+1\right)+l'\left(l'+1\right)-\lambda\left(\lambda+1\right)\right)\times\\
|
|
|
|
|
\times j_{\lambda}\left(d\right)P_{\lambda}^{m-m'}\left(\cos\theta_{\uvec d}\right)e^{i\left(m-m'\right)\phi_{\uvec d}},\\
|
|
|
|
|
D_{ml,m'l'}\left(\vect d\right)=\frac{\left(-1\right)^{m+m'}}{2}\sqrt{\frac{\varepsilon_{m}\varepsilon_{m'}}{4}}\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda+1}{2}}\left(2\lambda+1\right)\sqrt{\frac{\left(2l+1\right)\left(2l'+1\right)\left(\lambda-\left(m-m'\right)\right)!}{l\left(l+1\right)l'\left(l'+1\right)\left(\lambda+\left(m-m'\right)\right)!}}\times\\
|
|
|
|
|
\times\begin{pmatrix}l & l' & \lambda-1\\
|
|
|
|
|
0 & 0 & 0
|
|
|
|
|
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
|
|
|
|
|
m & -m' & m'-m
|
|
|
|
|
\end{pmatrix}\sqrt{\lambda^{2}-\left(l-l'\right)^{2}}\sqrt{\left(l+l'+1\right)^{2}-\lambda^{2}}\times\\
|
|
|
|
|
\times j_{\lambda}\left(d\right)P_{\lambda}^{m-m'}\left(\cos\theta_{\uvec d}\right)e^{i\left(m-m'\right)\phi_{\uvec d}},\qquad\tau\ne\tau'.
|
|
|
|
|
\end{multline*}
|
2019-07-31 11:43:24 +03:00
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-08-03 14:11:33 +03:00
|
|
|
|
where I have found a
|
|
|
|
|
\begin_inset Formula $-i$
|
|
|
|
|
\end_inset
|
2019-07-31 11:43:24 +03:00
|
|
|
|
|
2019-08-03 14:11:33 +03:00
|
|
|
|
factor in the
|
|
|
|
|
\begin_inset Formula $\tau\ne\tau'$
|
|
|
|
|
\end_inset
|
2019-07-31 11:43:24 +03:00
|
|
|
|
|
2019-08-03 14:11:33 +03:00
|
|
|
|
coefficients, so I force it here:
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\begin_inset Formula
|
2019-08-03 14:11:33 +03:00
|
|
|
|
\begin{multline*}
|
|
|
|
|
C_{ml,m'l'}\left(\vect d\right)=\frac{\left(-1\right)^{m+m'}}{2}\sum_{\lambda=\left|l-l'\right|}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda}{2}}\left(2\lambda+1\right)\sqrt{\frac{\left(2l+1\right)\left(2l'+1\right)\left(\lambda-\left(m-m'\right)\right)!}{l\left(l+1\right)l'\left(l'+1\right)\left(\lambda+\left(m-m'\right)\right)!}}\times\\
|
2019-07-31 11:43:24 +03:00
|
|
|
|
\times\begin{pmatrix}l & l' & \lambda\\
|
|
|
|
|
0 & 0 & 0
|
|
|
|
|
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
|
|
|
|
|
m & -m' & m'-m
|
|
|
|
|
\end{pmatrix}\left(l\left(l+1\right)+l'\left(l'+1\right)-\lambda\left(\lambda+1\right)\right)\times\\
|
|
|
|
|
\times j_{\lambda}\left(d\right)P_{\lambda}^{m-m'}\left(\cos\theta_{\uvec d}\right)e^{i\left(m-m'\right)\phi_{\uvec d}},\\
|
2019-08-03 14:11:33 +03:00
|
|
|
|
D_{ml,m'l'}\left(\vect d\right)=-i\frac{\left(-1\right)^{m+m'}}{2}\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda+1}{2}}\left(2\lambda+1\right)\sqrt{\frac{\left(2l+1\right)\left(2l'+1\right)\left(\lambda-\left(m-m'\right)\right)!}{l\left(l+1\right)l'\left(l'+1\right)\left(\lambda+\left(m-m'\right)\right)!}}\times\\
|
2019-07-31 11:43:24 +03:00
|
|
|
|
\times\begin{pmatrix}l & l' & \lambda-1\\
|
|
|
|
|
0 & 0 & 0
|
|
|
|
|
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
|
|
|
|
|
m & -m' & m'-m
|
|
|
|
|
\end{pmatrix}\sqrt{\lambda^{2}-\left(l-l'\right)^{2}}\sqrt{\left(l+l'+1\right)^{2}-\lambda^{2}}\times\\
|
2019-08-03 14:11:33 +03:00
|
|
|
|
\times j_{\lambda}\left(d\right)P_{\lambda}^{m-m'}\left(\cos\theta_{\uvec d}\right)e^{i\left(m-m'\right)\phi_{\uvec d}},\qquad\tau\ne\tau'.
|
|
|
|
|
\end{multline*}
|
2019-07-29 12:41:02 +03:00
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-08-03 14:11:33 +03:00
|
|
|
|
TODO check influence of the
|
|
|
|
|
\begin_inset Formula $\varepsilon_{m}$
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-08-03 14:11:33 +03:00
|
|
|
|
s, whether they can be just removed as above.
|
|
|
|
|
If we take our definition of spherical harmonics,
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\[
|
|
|
|
|
\ush lm=\left(\frac{\left(l-m\right)!\left(2l+1\right)}{4\pi\left(l+m\right)!}\right)^{\frac{1}{2}}e^{im\phi}\dlmfFer lm\left(\cos\theta\right)
|
|
|
|
|
\]
|
|
|
|
|
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-08-03 14:11:33 +03:00
|
|
|
|
so
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\[
|
|
|
|
|
\dlmfFer{\lambda}{m-m'}\left(\cos\theta_{\uvec d}\right)e^{i\left(m-m'\right)\phi_{\uvec d}}=\sqrt{\frac{4\pi\left(\lambda+m-m'\right)!}{\left(\lambda-m+m'\right)!\left(2\lambda+1\right)}}\ush{\lambda}{m-m'}\left(\uvec d\right)
|
|
|
|
|
\]
|
|
|
|
|
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-08-03 14:11:33 +03:00
|
|
|
|
and taking into account that we use the CS phase
|
|
|
|
|
\begin_inset Formula $\dlmfFer lm\left(\cos\theta\right)=\left(-1\right)^{m}P_{l}^{m}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
, and that
|
|
|
|
|
\begin_inset Formula $\left(-1\right)^{m+m'}=\left(-1\right)^{m-m'}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
we have
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\begin_layout Plain Layout
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{multline*}
|
|
|
|
|
C_{ml,m'l'}\left(\vect d\right)=\frac{1}{2}\sum_{\lambda=\left|l-l'\right|}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda}{2}}\left(2\lambda+1\right)\sqrt{\frac{\left(2l+1\right)\left(2l'+1\right)\left(\lambda-\left(m-m'\right)\right)!}{l\left(l+1\right)l'\left(l'+1\right)\left(\lambda+\left(m-m'\right)\right)!}}\times\\
|
|
|
|
|
\times\begin{pmatrix}l & l' & \lambda\\
|
|
|
|
|
0 & 0 & 0
|
|
|
|
|
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
|
|
|
|
|
m & -m' & m'-m
|
|
|
|
|
\end{pmatrix}\left(l\left(l+1\right)+l'\left(l'+1\right)-\lambda\left(\lambda+1\right)\right)\times\\
|
|
|
|
|
\times j_{\lambda}\left(d\right)\dlmfFer{\lambda}{m-m'}\left(\cos\theta_{\uvec d}\right)e^{i\left(m-m'\right)\phi_{\uvec d}},\\
|
|
|
|
|
D_{ml,m'l'}\left(\vect d\right)=-i\frac{1}{2}\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda+1}{2}}\left(2\lambda+1\right)\sqrt{\frac{\left(2l+1\right)\left(2l'+1\right)\left(\lambda-\left(m-m'\right)\right)!}{l\left(l+1\right)l'\left(l'+1\right)\left(\lambda+\left(m-m'\right)\right)!}}\times\\
|
|
|
|
|
\times\begin{pmatrix}l & l' & \lambda-1\\
|
|
|
|
|
0 & 0 & 0
|
|
|
|
|
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
|
|
|
|
|
m & -m' & m'-m
|
|
|
|
|
\end{pmatrix}\sqrt{\lambda^{2}-\left(l-l'\right)^{2}}\sqrt{\left(l+l'+1\right)^{2}-\lambda^{2}}\times\\
|
|
|
|
|
\times j_{\lambda}\left(d\right)\dlmfFer{\lambda}{m-m'}\left(\cos\theta_{\uvec d}\right)e^{i\left(m-m'\right)\phi_{\uvec d}},\qquad\tau\ne\tau'.
|
|
|
|
|
\end{multline*}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{multline*}
|
|
|
|
|
C_{ml,m'l'}\left(\vect d\right)=\frac{1}{2}\sum_{\lambda=\left|l-l'\right|}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda}{2}}\left(2\lambda+1\right)\sqrt{\frac{\left(2l+1\right)\left(2l'+1\right)\left(\lambda-\left(m-m'\right)\right)!}{l\left(l+1\right)l'\left(l'+1\right)\left(\lambda+\left(m-m'\right)\right)!}}\times\\
|
|
|
|
|
\times\begin{pmatrix}l & l' & \lambda\\
|
|
|
|
|
0 & 0 & 0
|
|
|
|
|
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
|
|
|
|
|
m & -m' & m'-m
|
|
|
|
|
\end{pmatrix}\left(l\left(l+1\right)+l'\left(l'+1\right)-\lambda\left(\lambda+1\right)\right)\times\\
|
|
|
|
|
\times j_{\lambda}\left(d\right)\sqrt{\frac{4\pi\left(\lambda+m-m'\right)!}{\left(\lambda-m+m'\right)!\left(2\lambda+1\right)}}\ush{\lambda}{m-m'}\left(\uvec d\right),\\
|
|
|
|
|
D_{ml,m'l'}\left(\vect d\right)=-i\frac{1}{2}\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda+1}{2}}\left(2\lambda+1\right)\sqrt{\frac{\left(2l+1\right)\left(2l'+1\right)\left(\lambda-\left(m-m'\right)\right)!}{l\left(l+1\right)l'\left(l'+1\right)\left(\lambda+\left(m-m'\right)\right)!}}\times\\
|
|
|
|
|
\times\begin{pmatrix}l & l' & \lambda-1\\
|
|
|
|
|
0 & 0 & 0
|
|
|
|
|
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
|
|
|
|
|
m & -m' & m'-m
|
|
|
|
|
\end{pmatrix}\sqrt{\lambda^{2}-\left(l-l'\right)^{2}}\sqrt{\left(l+l'+1\right)^{2}-\lambda^{2}}\times\\
|
|
|
|
|
\times j_{\lambda}\left(d\right)\sqrt{\frac{4\pi\left(\lambda+m-m'\right)!}{\left(\lambda-m+m'\right)!\left(2\lambda+1\right)}}\ush{\lambda}{m-m'}\left(\uvec d\right),\qquad\tau\ne\tau'.
|
|
|
|
|
\end{multline*}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{multline*}
|
|
|
|
|
C_{ml,m'l'}\left(\vect d\right)=\frac{1}{2}\sum_{\lambda=\left|l-l'\right|}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda}{2}}\sqrt{\frac{4\pi\left(2\lambda+1\right)\left(2l+1\right)\left(2l'+1\right)}{l\left(l+1\right)l'\left(l'+1\right)}}\times\\
|
|
|
|
|
\times\begin{pmatrix}l & l' & \lambda\\
|
|
|
|
|
0 & 0 & 0
|
|
|
|
|
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
|
|
|
|
|
m & -m' & m'-m
|
|
|
|
|
\end{pmatrix}\left(l\left(l+1\right)+l'\left(l'+1\right)-\lambda\left(\lambda+1\right)\right)\times\\
|
|
|
|
|
\times j_{\lambda}\left(d\right)\ush{\lambda}{m-m'}\left(\uvec d\right),\\
|
|
|
|
|
D_{ml,m'l'}\left(\vect d\right)=-i\frac{1}{2}\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda+1}{2}}\sqrt{\frac{4\pi\left(2\lambda+1\right)\left(2l+1\right)\left(2l'+1\right)}{l\left(l+1\right)l'\left(l'+1\right)}}\times\\
|
|
|
|
|
\times\begin{pmatrix}l & l' & \lambda-1\\
|
|
|
|
|
0 & 0 & 0
|
|
|
|
|
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
|
|
|
|
|
m & -m' & m'-m
|
|
|
|
|
\end{pmatrix}\sqrt{\lambda^{2}-\left(l-l'\right)^{2}}\sqrt{\left(l+l'+1\right)^{2}-\lambda^{2}}\times\\
|
|
|
|
|
\times j_{\lambda}\left(d\right)\ush{\lambda}{m-m'}\left(\uvec d\right),\qquad\tau\ne\tau'.
|
|
|
|
|
\end{multline*}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
and finally
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{multline*}
|
|
|
|
|
C_{ml,m'l'}\left(\vect d\right)=\sum_{\lambda=\left|l-l'\right|}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda}{2}}\sqrt{\frac{4\pi\left(2\lambda+1\right)\left(2l+1\right)\left(2l'+1\right)}{l\left(l+1\right)l'\left(l'+1\right)}}\times\\
|
|
|
|
|
\times\begin{pmatrix}l & l' & \lambda\\
|
|
|
|
|
0 & 0 & 0
|
|
|
|
|
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
|
|
|
|
|
m & -m' & m'-m
|
|
|
|
|
\end{pmatrix}\left(l\left(l+1\right)+l'\left(l'+1\right)-\lambda\left(\lambda+1\right)\right)\times\\
|
|
|
|
|
\times j_{\lambda}\left(d\right)\ush{\lambda}{m-m'}\left(\uvec d\right),\\
|
|
|
|
|
D_{ml,m'l'}\left(\vect d\right)=-i\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda+1}{2}}\sqrt{\frac{4\pi\left(2\lambda+1\right)\left(2l+1\right)\left(2l'+1\right)}{l\left(l+1\right)l'\left(l'+1\right)}}\times\\
|
|
|
|
|
\times\begin{pmatrix}l & l' & \lambda-1\\
|
|
|
|
|
0 & 0 & 0
|
|
|
|
|
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
|
|
|
|
|
m & -m' & m'-m
|
|
|
|
|
\end{pmatrix}\sqrt{\lambda^{2}-\left(l-l'\right)^{2}}\sqrt{\left(l+l'+1\right)^{2}-\lambda^{2}}\times\\
|
|
|
|
|
\times j_{\lambda}\left(d\right)\ush{\lambda}{m-m'}\left(\uvec d\right),\qquad\tau\ne\tau'.
|
|
|
|
|
\end{multline*}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
2020-06-05 10:59:41 +03:00
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\[
|
|
|
|
|
\tropcoeff_{\tau lm;\tau'l'm'}^{\lambda}=\begin{cases}
|
|
|
|
|
A_{lm;l'm'}^{\lambda} & \tau=\tau',\\
|
|
|
|
|
B_{lm;l'm'}^{\lambda} & \tau\ne\tau',
|
|
|
|
|
\end{cases}
|
|
|
|
|
\]
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
2019-08-03 14:11:33 +03:00
|
|
|
|
\begin_inset Formula
|
2019-08-07 06:55:47 +03:00
|
|
|
|
\begin{multline}
|
2020-06-05 10:59:41 +03:00
|
|
|
|
A_{lm;l'm'}^{\lambda}=\left(-1\right)^{\frac{l'-l+\lambda}{2}}\sqrt{\frac{4\pi\left(2\lambda+1\right)\left(2l+1\right)\left(2l'+1\right)}{l\left(l+1\right)l'\left(l'+1\right)}}\times\\
|
2019-08-03 14:11:33 +03:00
|
|
|
|
\times\begin{pmatrix}l & l' & \lambda\\
|
|
|
|
|
0 & 0 & 0
|
|
|
|
|
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
|
|
|
|
|
m & -m' & m'-m
|
|
|
|
|
\end{pmatrix}\left(l\left(l+1\right)+l'\left(l'+1\right)-\lambda\left(\lambda+1\right)\right),\\
|
2020-06-05 10:59:41 +03:00
|
|
|
|
B_{lm;l'm'}^{\lambda}=-i\left(-1\right)^{\frac{l'-l+\lambda+1}{2}}\sqrt{\frac{4\pi\left(2\lambda+1\right)\left(2l+1\right)\left(2l'+1\right)}{l\left(l+1\right)l'\left(l'+1\right)}}\times\\
|
2019-08-03 14:11:33 +03:00
|
|
|
|
\times\begin{pmatrix}l & l' & \lambda-1\\
|
|
|
|
|
0 & 0 & 0
|
|
|
|
|
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
|
|
|
|
|
m & -m' & m'-m
|
2019-08-07 06:55:47 +03:00
|
|
|
|
\end{pmatrix}\sqrt{\lambda^{2}-\left(l-l'\right)^{2}}\sqrt{\left(l+l'+1\right)^{2}-\lambda^{2}}.\label{eq:translation operator constant factors}
|
|
|
|
|
\end{multline}
|
2019-08-03 14:11:33 +03:00
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-08-04 05:54:08 +03:00
|
|
|
|
Here
|
|
|
|
|
\begin_inset Formula $\begin{pmatrix}l_{1} & l_{2} & l_{3}\\
|
|
|
|
|
m_{1} & m_{2} & m_{3}
|
|
|
|
|
\end{pmatrix}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
is the
|
|
|
|
|
\begin_inset Formula $3j$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
symbol defined as in
|
|
|
|
|
\begin_inset CommandInset citation
|
|
|
|
|
LatexCommand cite
|
|
|
|
|
after "§34.2"
|
|
|
|
|
key "NIST:DLMF"
|
|
|
|
|
literal "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
.
|
|
|
|
|
Importantly for practical calculations, these rather complicated coefficients
|
|
|
|
|
need to be evaluated only once up to the highest truncation order,
|
|
|
|
|
\begin_inset Formula $l,l'\le L$
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
.
|
2019-08-04 05:54:08 +03:00
|
|
|
|
|
|
|
|
|
\begin_inset Note Note
|
|
|
|
|
status open
|
|
|
|
|
|
|
|
|
|
\begin_layout Plain Layout
|
|
|
|
|
TODO write more here.
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-08-03 14:11:33 +03:00
|
|
|
|
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
|
In our convention, the regular translation operator is unitary,
|
|
|
|
|
\begin_inset Formula $\left(\tropr_{\tau lm;\tau'l'm'}\left(\vect d\right)\right)^{-1}=\tropr_{\tau lm;\tau'l'm'}\left(-\vect d\right)=\tropr_{\tau'l'm';\tau lm}^{*}\left(\vect d\right)$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
\begin_inset Note Note
|
|
|
|
|
status open
|
|
|
|
|
|
|
|
|
|
\begin_layout Plain Layout
|
|
|
|
|
todo different notation for the complex conjugation without transposition???
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
or in the per-particle matrix notation,
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{equation}
|
2019-08-03 14:11:33 +03:00
|
|
|
|
\troprp qp^{-1}=\troprp pq=\troprp qp^{\dagger}.\label{eq:regular translation unitarity}
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
Note that truncation at finite multipole degree breaks the unitarity,
|
|
|
|
|
\begin_inset Formula $\truncated{\troprp qp}L^{-1}\ne\truncated{\troprp pq}L=\truncated{\troprp qp^{\dagger}}L$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
, which has to be taken into consideration when evaluating quantities such
|
|
|
|
|
as absorption or scattering cross sections.
|
|
|
|
|
Similarly, the full regular operators can be composed
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\troprp ac=\troprp ab\troprp bc\label{eq:regular translation composition}
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
but truncation breaks this,
|
|
|
|
|
\begin_inset Formula $\truncated{\troprp ac}L\ne\truncated{\troprp ab}L\truncated{\troprp bc}L.$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\begin_layout Subsubsection
|
|
|
|
|
Cross-sections (many scatterers)
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
|
For a system of many scatterers, Kristensson
|
|
|
|
|
\begin_inset CommandInset citation
|
|
|
|
|
LatexCommand cite
|
|
|
|
|
after "sect. 9.2.2"
|
|
|
|
|
key "kristensson_scattering_2016"
|
|
|
|
|
literal "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
derives only the extinction cross section formula.
|
|
|
|
|
Let us re-derive it together with the many-particle scattering and absorption
|
|
|
|
|
cross sections.
|
2019-08-06 23:43:01 +03:00
|
|
|
|
First, let us take a ball containing all the scatterers at once,
|
|
|
|
|
\begin_inset Formula $\openball R{\vect r_{\square}}\supset\bigcup_{p\in\mathcal{P}}\closedball{R_{p}}{\vect r_{p}}$
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
.
|
|
|
|
|
Outside
|
|
|
|
|
\begin_inset Formula $\openball R{\vect r_{\square}}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
, we can describe the EM fields as if there was only a single scatterer,
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\[
|
2019-08-07 15:20:45 +03:00
|
|
|
|
\vect E\left(\vect r\right)=\sum_{\tau,l,m}\left(\rcoeffptlm{\square}{\tau}lm\vswfrtlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{\square}\right)\right)+\outcoeffptlm{\square}{\tau}lm\vswfouttlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{\square}\right)\right)\right),
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\]
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
where
|
|
|
|
|
\begin_inset Formula $\rcoeffp{\square},\outcoeffp{\square}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
are the vectors of VSWF expansion coefficients of the incident and total
|
|
|
|
|
scattered fields, respectively, at origin
|
|
|
|
|
\begin_inset Formula $\vect r_{\square}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
.
|
|
|
|
|
In principle, one could evaluate
|
|
|
|
|
\begin_inset Formula $\outcoeffp{\square}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
2019-08-06 23:43:01 +03:00
|
|
|
|
using the translation operators and use the single-scatterer formulae
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\begin_inset CommandInset ref
|
|
|
|
|
LatexCommand eqref
|
|
|
|
|
reference "eq:extincion CS single"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
–
|
|
|
|
|
\begin_inset CommandInset ref
|
|
|
|
|
LatexCommand eqref
|
|
|
|
|
reference "eq:absorption CS single"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
with
|
|
|
|
|
\begin_inset Formula $\rcoeffp{}=\rcoeffp{\square},\outcoeffp{}=\outcoeffp{\square}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
to obtain the cross sections.
|
|
|
|
|
However, this is not suitable for numerical evaluation with truncation
|
|
|
|
|
in multipole degree; hence we need to express them in terms of particle-wise
|
|
|
|
|
expansions
|
|
|
|
|
\begin_inset Formula $\rcoeffp p,\outcoeffp p$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
.
|
|
|
|
|
The original incident field re-expanded around
|
|
|
|
|
\begin_inset Formula $p$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
-th particle reads according to
|
|
|
|
|
\begin_inset CommandInset ref
|
2019-07-31 17:52:58 +03:00
|
|
|
|
LatexCommand eqref
|
2019-11-13 12:54:14 +02:00
|
|
|
|
reference "eq:reqular vswf coefficient vector translation"
|
2019-07-29 12:41:02 +03:00
|
|
|
|
plural "false"
|
|
|
|
|
caps "false"
|
|
|
|
|
noprefix "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\rcoeffincp p=\troprp p{\square}\rcoeffp{\square}\label{eq:a_inc local from global}
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
whereas the contributions of fields scattered from each particle expanded
|
|
|
|
|
around the global origin
|
|
|
|
|
\begin_inset Formula $\vect r_{\square}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
is, according to
|
|
|
|
|
\begin_inset CommandInset ref
|
2019-07-31 17:52:58 +03:00
|
|
|
|
LatexCommand eqref
|
2019-11-13 12:54:14 +02:00
|
|
|
|
reference "eq:singular to regular vswf coefficient vector translation"
|
2019-07-29 12:41:02 +03:00
|
|
|
|
plural "false"
|
|
|
|
|
caps "false"
|
|
|
|
|
noprefix "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\outcoeffp{\square}=\sum_{q\in\mathcal{P}}\troprp{\square}q\outcoeffp q.\label{eq:f global from local}
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
Using the unitarity
|
|
|
|
|
\begin_inset CommandInset ref
|
2019-07-31 17:52:58 +03:00
|
|
|
|
LatexCommand eqref
|
2019-07-29 12:41:02 +03:00
|
|
|
|
reference "eq:regular translation unitarity"
|
|
|
|
|
plural "false"
|
|
|
|
|
caps "false"
|
|
|
|
|
noprefix "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
and composition
|
|
|
|
|
\begin_inset CommandInset ref
|
2019-07-31 17:52:58 +03:00
|
|
|
|
LatexCommand eqref
|
2019-07-29 12:41:02 +03:00
|
|
|
|
reference "eq:regular translation composition"
|
|
|
|
|
plural "false"
|
|
|
|
|
caps "false"
|
|
|
|
|
noprefix "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
properties, one has
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{align}
|
|
|
|
|
\rcoeffp{\square}^{\dagger}\outcoeffp{\square} & =\rcoeffincp p^{\dagger}\troprp p{\square}\troprp{\square}q\outcoeffp q=\rcoeffincp p^{\dagger}\sum_{q\in\mathcal{P}}\troprp pqf_{q}\nonumber \\
|
|
|
|
|
& =\sum_{q\in\mathcal{P}}\left(\troprp qp\rcoeffincp p\right)^{\dagger}f_{q}=\sum_{q\in\mathcal{P}}\rcoeffincp q^{\dagger}f_{q},\label{eq:atf form multiparticle}
|
|
|
|
|
\end{align}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
where only the last expression is suitable for numerical evaluation with
|
|
|
|
|
truncated matrices, because the previous ones contain a translation operator
|
2019-08-06 23:43:01 +03:00
|
|
|
|
right next to an incident field coefficient vector
|
|
|
|
|
\begin_inset Note Note
|
|
|
|
|
status open
|
|
|
|
|
|
|
|
|
|
\begin_layout Plain Layout
|
|
|
|
|
(see Sec.
|
|
|
|
|
TODO)
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
.
|
2019-07-29 12:41:02 +03:00
|
|
|
|
Similarly,
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{align}
|
|
|
|
|
\left\Vert \outcoeffp{\square}\right\Vert ^{2} & =\outcoeffp{\square}^{\dagger}\outcoeffp{\square}=\sum_{p\in\mathcal{P}}\left(\troprp{\square}p\outcoeffp p\right)^{\dagger}\sum_{q\in\mathcal{P}}\troprp{\square}q\outcoeffp q\nonumber \\
|
|
|
|
|
& =\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\outcoeffp p^{\dagger}\troprp pq\outcoeffp q.\label{eq:f squared form multiparticle}
|
|
|
|
|
\end{align}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
Substituting
|
|
|
|
|
\begin_inset CommandInset ref
|
2019-07-31 17:52:58 +03:00
|
|
|
|
LatexCommand eqref
|
2019-07-29 12:41:02 +03:00
|
|
|
|
reference "eq:atf form multiparticle"
|
|
|
|
|
plural "false"
|
|
|
|
|
caps "false"
|
|
|
|
|
noprefix "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
\begin_inset CommandInset ref
|
2019-07-31 17:52:58 +03:00
|
|
|
|
LatexCommand eqref
|
2019-07-29 12:41:02 +03:00
|
|
|
|
reference "eq:f squared form multiparticle"
|
|
|
|
|
plural "false"
|
|
|
|
|
caps "false"
|
|
|
|
|
noprefix "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
into
|
|
|
|
|
\begin_inset CommandInset ref
|
2019-07-31 17:52:58 +03:00
|
|
|
|
LatexCommand eqref
|
2019-07-29 12:41:02 +03:00
|
|
|
|
reference "eq:scattering CS single"
|
|
|
|
|
plural "false"
|
|
|
|
|
caps "false"
|
|
|
|
|
noprefix "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
and
|
|
|
|
|
\begin_inset CommandInset ref
|
2019-07-31 17:52:58 +03:00
|
|
|
|
LatexCommand eqref
|
2019-07-29 12:41:02 +03:00
|
|
|
|
reference "eq:absorption CS single"
|
|
|
|
|
plural "false"
|
|
|
|
|
caps "false"
|
|
|
|
|
noprefix "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
, we get the many-particle expressions for extinction, scattering and absorption
|
|
|
|
|
cross sections suitable for numerical evaluation:
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{eqnarray}
|
2020-03-20 16:47:00 +02:00
|
|
|
|
\sigma_{\mathrm{ext}}\left(\uvec k,\hat{\vect E}_{0}\right) & = & -\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\sum_{p\in\mathcal{P}}\rcoeffincp p^{\dagger}\outcoeffp p=-\frac{1}{2k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\sum_{p\in\mathcal{P}}\rcoeffincp p^{\dagger}\left(\Tp p+\Tp p^{\dagger}\right)\rcoeffp p,\label{eq:extincion CS multi}\\
|
|
|
|
|
\sigma_{\mathrm{scat}}\left(\uvec k,\hat{\vect E}_{0}\right) & = & \frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\outcoeffp p^{\dagger}\troprp pq\outcoeffp q\nonumber \\
|
2019-08-07 15:20:45 +03:00
|
|
|
|
& & =\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\rcoeffp p^{\dagger}\Tp p^{\dagger}\troprp pq\Tp q\rcoeffp q,\label{eq:scattering CS multi}\\
|
2020-03-20 16:47:00 +02:00
|
|
|
|
\sigma_{\mathrm{abs}}\left(\uvec k,\hat{\vect E}_{0}\right) & = & -\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffincp p+\sum_{q\in\mathcal{P}}\troprp pq\outcoeffp q\right)\right).\nonumber \\
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\label{eq:absorption CS multi}
|
|
|
|
|
\end{eqnarray}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset Note Note
|
|
|
|
|
status open
|
|
|
|
|
|
|
|
|
|
\begin_layout Plain Layout
|
|
|
|
|
\begin_inset Formula $=\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\mbox{TODO}.$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
An alternative approach to derive the absorption cross section is via a
|
|
|
|
|
power transport argument.
|
|
|
|
|
Note the direct proportionality between absorption cross section
|
|
|
|
|
\begin_inset CommandInset ref
|
2019-07-31 17:52:58 +03:00
|
|
|
|
LatexCommand eqref
|
2019-07-29 12:41:02 +03:00
|
|
|
|
reference "eq:absorption CS single"
|
|
|
|
|
plural "false"
|
|
|
|
|
caps "false"
|
|
|
|
|
noprefix "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
and net radiated power for single scatterer
|
|
|
|
|
\begin_inset CommandInset ref
|
2019-07-31 17:52:58 +03:00
|
|
|
|
LatexCommand eqref
|
2019-07-29 12:41:02 +03:00
|
|
|
|
reference "eq:Power transport"
|
|
|
|
|
plural "false"
|
|
|
|
|
caps "false"
|
|
|
|
|
noprefix "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
\begin_inset Formula $\sigma_{\mathrm{abs}}=-\eta_{0}\eta P/2\left\Vert \vect E_{0}\right\Vert ^{2}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
.
|
|
|
|
|
In the many-particle setup (with non-lossy background medium, so that only
|
|
|
|
|
the particles absorb), the total absorbed power is equal to the sum of
|
|
|
|
|
absorbed powers on each particle,
|
|
|
|
|
\begin_inset Formula $-P=\sum_{p\in\mathcal{P}}-P_{p}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
.
|
|
|
|
|
Using the power transport formula
|
|
|
|
|
\begin_inset CommandInset ref
|
2019-07-31 17:52:58 +03:00
|
|
|
|
LatexCommand eqref
|
2019-07-29 12:41:02 +03:00
|
|
|
|
reference "eq:Power transport"
|
|
|
|
|
plural "false"
|
|
|
|
|
caps "false"
|
|
|
|
|
noprefix "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
particle-wise gives
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{equation}
|
2019-08-07 15:20:45 +03:00
|
|
|
|
\sigma_{\mathrm{abs}}\left(\uvec k\right)=-\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\left(\Re\left(\rcoeffp p^{\dagger}\outcoeffp p\right)+\left\Vert \outcoeffp p\right\Vert ^{2}\right)\label{eq:absorption CS multi alternative}
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
which seems different from
|
|
|
|
|
\begin_inset CommandInset ref
|
2019-07-31 17:52:58 +03:00
|
|
|
|
LatexCommand eqref
|
2019-07-29 12:41:02 +03:00
|
|
|
|
reference "eq:absorption CS multi"
|
|
|
|
|
plural "false"
|
|
|
|
|
caps "false"
|
|
|
|
|
noprefix "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
, but using
|
|
|
|
|
\begin_inset CommandInset ref
|
2019-07-31 17:52:58 +03:00
|
|
|
|
LatexCommand eqref
|
2019-07-29 12:41:02 +03:00
|
|
|
|
reference "eq:particle total incident field coefficient a"
|
|
|
|
|
plural "false"
|
|
|
|
|
caps "false"
|
|
|
|
|
noprefix "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
, we can rewrite it as
|
|
|
|
|
\begin_inset Formula
|
|
|
|
|
\begin{align*}
|
2019-08-07 15:20:45 +03:00
|
|
|
|
\sigma_{\mathrm{abs}}\left(\uvec k\right) & =-\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffp p+\outcoeffp p\right)\right)\\
|
|
|
|
|
& =-\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffincp p+\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\tropsp pq\outcoeffp q+\outcoeffp p\right)\right).
|
2019-07-29 12:41:02 +03:00
|
|
|
|
\end{align*}
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
It is easy to show that all the terms of
|
|
|
|
|
\begin_inset Formula $\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\outcoeffp p^{\dagger}\tropsp pq\outcoeffp q$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
containing the singular spherical Bessel functions
|
|
|
|
|
\begin_inset Formula $y_{l}$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
are imaginary,
|
|
|
|
|
\begin_inset Note Note
|
|
|
|
|
status open
|
|
|
|
|
|
|
|
|
|
\begin_layout Plain Layout
|
|
|
|
|
TODO better formulation
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
so that actually
|
|
|
|
|
\begin_inset Formula $\sum_{p\in\mathcal{P}}\Re\left(\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\outcoeffp p^{\dagger}\tropsp pq\outcoeffp q+\outcoeffp p^{\dagger}\outcoeffp p\right)=\sum_{p\in\mathcal{P}}\Re\left(\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\outcoeffp p^{\dagger}\troprp pq\outcoeffp q+\outcoeffp p^{\dagger}\outcoeffp p\right)=\sum_{p\in\mathcal{P}}\Re\left(\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\outcoeffp p^{\dagger}\troprp pq\outcoeffp q+\outcoeffp p^{\dagger}\troprp pp\outcoeffp p\right)=\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\outcoeffp p^{\dagger}\troprp pq\outcoeffp q,$
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
proving that the expressions in
|
|
|
|
|
\begin_inset CommandInset ref
|
2019-07-31 17:52:58 +03:00
|
|
|
|
LatexCommand eqref
|
2019-07-29 12:41:02 +03:00
|
|
|
|
reference "eq:absorption CS multi"
|
|
|
|
|
plural "false"
|
|
|
|
|
caps "false"
|
|
|
|
|
noprefix "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
and
|
|
|
|
|
\begin_inset CommandInset ref
|
2019-07-31 17:52:58 +03:00
|
|
|
|
LatexCommand eqref
|
2019-07-29 12:41:02 +03:00
|
|
|
|
reference "eq:absorption CS multi alternative"
|
|
|
|
|
plural "false"
|
|
|
|
|
caps "false"
|
|
|
|
|
noprefix "false"
|
|
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
are equal.
|
2019-07-01 14:50:46 +03:00
|
|
|
|
\end_layout
|
|
|
|
|
|
2019-06-30 21:30:54 +03:00
|
|
|
|
\end_body
|
|
|
|
|
\end_document
|