Compare commits

..

66 Commits

Author SHA1 Message Date
Marek Nečada 7bcde2faa2 Add URLs to bibtex notes
Former-commit-id: 79338902f352e860d6b80454726987ca8ccdf801
2020-06-23 12:14:07 +03:00
Marek Nečada 63c8743221 Supplementary (derivation of 1D and 2D lattice sums)
Former-commit-id: bf57f560e9eeb960e92251393dddd33ebbfd1d14
2020-06-23 11:41:48 +03:00
Marek Nečada f55feab80b Example figs done.
Former-commit-id: df68c97337db3f77c327482efb13fa329edd2eeb
2020-06-23 10:57:05 +03:00
Marek Nečada a5cf8505f7 Rewrite Ewald intro.
Former-commit-id: df9c666b9cb34b45fab00155b0ee2a89f0c7c1e8
2020-06-22 16:29:11 +03:00
Marek Nečada f756592bc5 Fix eq. (2.19); typography
Former-commit-id: 13ff4d97953d74878fcd16c1b2e581fb4284fc65
2020-06-22 16:00:18 +03:00
Marek Nečada 31f8eda4d2 Update acknowlegdments
Former-commit-id: e2bf74a2e2a2c6b051070897173aff85994f41ed
2020-06-22 15:29:15 +03:00
Marek Nečada 3ce1210d8a Rework periodic part.
Former-commit-id: 4b15d1e9342e7c6b049c5bd29fd98c9766bf38a4
2020-06-22 15:25:55 +03:00
Marek Nečada eb26821d11 Put the macros out of the main document.
Former-commit-id: 034477deed7f6d6b99095091549ee0bea094d603
2020-06-22 06:11:35 +03:00
Marek Nečada 64b76d97d3 Summary
Former-commit-id: 208124cb5f6c85a3fe1174c253fd41322401600e
2020-06-22 06:10:45 +03:00
Marek Nečada ff932b98f9 Change document class, add keywords and AMS subject specification.
Former-commit-id: df441842936877212d3122ead9365307dce5fb2f
2020-06-17 19:28:39 +03:00
Marek Nečada b5723a4e79 Acknowledgements.
Former-commit-id: efa9f7ff4ebd8913aa3b68457e31483229405aea
2020-06-17 14:08:13 +03:00
Marek Nečada 5aa40c12f7 Implement Päivi's suggestions except the Applications part.
Former-commit-id: 1a2846bf8762bfa4c22ce7ff2eb83c37cc17da37
2020-06-16 23:28:40 +03:00
Marek Nečada 7573c2987b Merge branch 'article_wrk' into article
Former-commit-id: 91ffb5d42066adae1d3193b9c5125f2d546d3314
2020-06-16 22:34:12 +03:00
Marek Nečada 6092449db4 WIP
Former-commit-id: 3ab2f0803f9399fe32c41325b9404f8e0b1ba18c
2020-06-16 22:33:18 +03:00
Marek Nečada 778c4b480a [DELETED]
Former-commit-id: d1d6b756b76c16cf963dcb577b2a6a2090f602df
2020-06-16 22:33:01 +03:00
Marek Nečada d53214e3bf WIP examples
Former-commit-id: b7b33fa78bea10655c9a447f8b9c1f20ce9a3edd
2020-06-16 22:30:07 +03:00
Marek Nečada 0e45ae0d05 More Päivi's suggestions implemented.
Former-commit-id: f391fdb73b126a241e3900d5282841f03abd5fb0
2020-06-16 21:47:30 +03:00
Marek Nečada 8942753a13 Fixes suggested by Päivi up to sect. 3.2
Former-commit-id: 65d31b97bb6aa8feae9118d34ededbd3092e128a
2020-06-16 13:15:31 +03:00
Marek Nečada 8c559ac0b7 "Lisätekstit" implementoitu
Former-commit-id: 56165a933a39be3440e5b20427af3eda8027d098
2020-06-16 11:00:55 +03:00
Marek Nečada 07fe3a4645 Adjustment of Ewald parameter.
Former-commit-id: 45810dae1a715a12ece882200501c2304528d0a1
2020-06-07 21:53:59 +03:00
Marek Nečada cb89e208ce Symmetries in periodic systems.
Former-commit-id: bd2806656af8532d17cb4d177990c3f7ffff2c71
2020-06-07 18:26:52 +03:00
Marek Nečada d8d0efc1b3 Improving the text on symmetries, WIP figs
Former-commit-id: 49e6eabb7188f98308c1b6d1661dbd0b89a79a71
2020-06-07 16:30:15 +03:00
Marek Nečada 9bd876c273 WIP hex drawing
Former-commit-id: c8e0a1218fe1a16f0903f6fa3a503b9fb8281f9e
2020-06-05 23:38:44 +03:00
Marek Nečada 6648e926db Trying to draw the images
Former-commit-id: 25bf663661f3428ea2a9d7ea0558a479c2a3f50b
2020-06-05 16:43:16 +03:00
Marek Nečada b80e7607f8 Simplify tr.op. expression. Scattered field in periodic system.
Former-commit-id: 0b93f3bdf78a3a3d6a9a2cf628012f80790daebd
2020-06-05 10:59:41 +03:00
Marek Nečada 16f12c041b Dudom
Former-commit-id: c1751edecb537dd0c96ef0642f39c366176e1482
2020-06-04 14:25:11 +03:00
Marek Nečada e00fcba1cc WIP tweaking infinite lattice text
Former-commit-id: 6d28b1a6a255c787245b822a8db51f1b6bab1cb7
2020-06-03 19:46:27 +03:00
Marek Nečada 9a68cb0293 WIP rewriting lattice sums part.
Former-commit-id: 2a61b377bb5f8e675c6e6866a2f161b3bf31f34d
2020-06-01 16:34:25 +03:00
Marek Nečada 43589e0f16 Article WIP
Former-commit-id: bad97e3053505df7b110a7a9f4f4607a0cad61c2
2020-03-20 16:47:00 +02:00
Marek Nečada 137e810c13 Square lattice example
Former-commit-id: 7921734bf86081fc059b767d92fe00f9cde55384
2020-03-16 16:02:49 +02:00
Marek Nečada 2187af8a92 Dudom.
Former-commit-id: 2f1677d7a330c42a22c84d507f3ca4022415bb2f
2020-03-15 21:15:42 +02:00
Marek Nečada 59883d2502 dudopráce
Former-commit-id: 12b3c37fb72513f52170400341e6e76dd250bf92
2020-03-15 15:04:18 +02:00
Marek Nečada 768a3aab5d Intro rewrite
Former-commit-id: a98a115412042ae1e3445870e16c104279db278a
2019-11-17 23:34:35 +02:00
Marek Nečada 1bdebd79f6 Intro formulations, refs
Former-commit-id: f0f90f0277d3ee8adb21a170a8e69c3fcba560f3
2019-11-17 22:25:36 +02:00
Marek Nečada ae10691d30 References etc.
Former-commit-id: c89c6417e387b6aa228ccdafb4c66438908240d0
2019-11-17 21:26:11 +02:00
Marek Nečada a3c6bfd4f0 Hex grid image experiments.
Former-commit-id: ef25b63cb46c99f726b93521e69921963c0d930a
2019-11-17 00:07:18 +02:00
Marek Nečada 846384b040 Introduction BS, political citations.
Former-commit-id: 825added4db2f9f0a7b934e53e493ed790bdd09a
2019-11-14 22:47:13 +02:00
Marek Nečada 2877fdfe3b Minor stuff; dudom.
Former-commit-id: b1eaff6343d892def3cc369df6b01ca661beb152
2019-11-13 23:04:10 +02:00
Marek Nečada db366b50e4 Branch cuts illustration.
Former-commit-id: 4828857eea686da2d221a7c7ebaaf7394159741c
2019-11-13 21:56:05 +02:00
Marek Nečada fae373c06d Comment on using Beyn's algorithm.
+ literature reference update


Former-commit-id: aa3050b8cd95b4bd15b120be243298779a31b16a
2019-11-13 14:32:38 +02:00
Marek Nečada b56c9f8ee3 Implement remaining minor Päivi's comments, comment on Γ branches.
Former-commit-id: 985cf66a7fde1b8b66807f82d4e9dc2942419e60
2019-11-13 12:54:14 +02:00
Marek Nečada 3b6dedf4a2 Implement some Päivi's comments.
Former-commit-id: a0cc5aec2ef60611d5154b68f55089f7ffac170e
2019-11-12 12:23:46 +02:00
Marek Nečada 21a1313a55 Remove old Bessel transform calculations.
These are absolutely unneeded for the article branch
and only take space even in shallow copies.


Former-commit-id: 58a5d5d29ee689d72d36de1bff11e80669261ad0
2019-11-11 20:55:33 +02:00
Marek Nečada a578b04a65 Fix sign in absorption cross section formula.
Former-commit-id: 695731c1ab4934abf88c6603a696cf5855cd4582
2019-11-07 00:29:41 +02:00
Marek Nečada f62ce5f700 Fix plane wave expansion coeffs.
Former-commit-id: ae5b827ed3b9c7646d1f98d96a784659fb460129
2019-10-13 17:54:48 +03:00
Marek Nečada 04ff84b5c9 Alternative titles.
Former-commit-id: 0efe1547c08e9016129b57e41fbb00b710c9cb7b
2019-08-27 10:30:16 +03:00
Marek Nečada 095525337d Relabel wave number with kappa + other fixes
Former-commit-id: e005aa094418e3a1cc80ec88768dfd4e9300acca
2019-08-07 15:50:19 +03:00
Marek Nečada 56180ec86b Examples draft
Former-commit-id: 3b093dc5504c990f4d20c248e0ee8f437a7d9b65
2019-08-07 09:00:48 +03:00
Marek Nečada 9657dc613e Replace with correct drawing
Former-commit-id: 7a3ad9060c7adcb2a5ad5b0e52f4b1eb6ccf0e33
2019-08-07 07:19:38 +03:00
Marek Nečada 9aff527bd9 Rewrite the Ewald summation part.
Former-commit-id: 9321d465ed0ba2da536afaab3813873a7ea64ac0
2019-08-07 06:55:47 +03:00
Marek Nečada 46b651d97f Unify balls notations, some refs etc.
Former-commit-id: 69e5ae075b639a6aed4988b9e8801947017026a5
2019-08-06 23:43:01 +03:00
Marek Nečada 2b031d43da Forgotten edit
Former-commit-id: a078dabd8e7e9bde76c0dc428b366fbd9895afa7
2019-08-06 21:15:12 +03:00
Marek Nečada b5a955a5de Rewrite intro
Former-commit-id: c682efe8f85f9dd03372d0a5b09b091fde11a327
2019-08-06 15:12:55 +03:00
Marek Nečada 8f8cd7ed8a Rewrite abstract
Former-commit-id: 3dc61f87e3be344538989a0e41fe34eb997e3470
2019-08-06 13:16:14 +03:00
Marek Nečada 47fab5f879 Update first part of the intro
Former-commit-id: 0066137ef7c695fbf1fbbb92a47164b7a3e8671c
2019-08-06 12:52:06 +03:00
Marek Nečada 2a890c56ac Implement some of Javier's notes.
Former-commit-id: 3881eccd2bbca4975d50c4a749751b7c134d6698
2019-08-06 10:16:53 +03:00
Marek Nečada c70317dc25 "Rule of thumb" on cutoff
Former-commit-id: 79a98d83bd88baab80d454ec4147e4a0b739647c
2019-08-06 09:57:10 +03:00
Marek Nečada 055ad7a1be Review of the finite multiple scattering group action part.
Former-commit-id: ad6e51190c52daa35522daa7654937f642161f60
2019-08-05 18:32:09 +03:00
Marek Nečada 306cb1bef8 Fix representation of spatial inversion.
Former-commit-id: b1146f5c199a2fc1e389984c425c5082fb8031b1
2019-08-05 15:47:49 +03:00
Marek Nečada 3fe357fb8a Fix M = WT -> M = TW + some forgotten changes.
Former-commit-id: 4166fb78baf097b52a559ece093454450ed19fbd
2019-08-04 18:24:17 +03:00
Marek Nečada 44b8146fe2 Merge branch 'article' of necada:~/repo/qpms into article
Former-commit-id: 82c5c429c2b2925d57979ced34dbab264b007917
2019-08-04 07:35:22 +03:00
Marek Nečada 770899546b Make it compile without warnings
Former-commit-id: 5d6e2c43518d1a65fef4007f5fb4b77a74b8cc0c
2019-08-04 07:35:02 +03:00
Marek Nečada acd2e1a11d 3j symbol mention
Former-commit-id: 867f063d699d6f23baf1eb735ffde0c0c95e89f2
2019-08-04 05:54:08 +03:00
Marek Nečada 600e1e9c55 Rewrite the translation operators in terms of spherical harmonics.
Former-commit-id: 74f2ab378f3ba78fbc57807277f30c6eecb32ea3
2019-08-03 14:11:33 +03:00
Marek Nečada 705e61053f Example of symmetry action in lattices, fig draft.
Former-commit-id: c2daba3042f5d17171fe51a0267583c934e3205c
2019-08-03 12:06:54 +03:00
Marek Nečada 64fdeb893e Fix reference
Former-commit-id: b116d0ed5739f545fa985106fce5af6f3051eb4c
2019-08-02 10:11:13 +03:00
563 changed files with 20791 additions and 27384 deletions

View File

@ -1,83 +0,0 @@
---
kind: pipeline
type: docker
name: buildqpms-alpine-preinstlibs
workspace:
path: /home/qpmsbuild/qpms
# don't run in master until the python/lapacke linking problem is resolved
trigger:
branch:
exclude:
- master
steps:
- name: chown
image: qpms/buildenv/alpine/pkgdnumlib
pull: never
commands:
- chown -R qpmsbuild.qpmsbuild .
- name: submodules
image: qpms/buildenv/alpine/pkgdnumlib
pull: never
user: qpmsbuild
commands:
- git submodule init
- git submodule update
- name: build
image: qpms/buildenv/alpine/pkgdnumlib
pull: never
user: qpmsbuild
commands:
- cmake -DCMAKE_INSTALL_PREFIX=$HOME/.local .
- make install
- export LIBRARY_PATH=$HOME/.local/lib
- python3 setup.py install --user
- cd examples/rectangular/modes
- pip3 install --user matplotlib #needed to run the example
- export LD_LIBRARY_PATH=$HOME/.local/lib
- ./01a_realfreq_svd.sh
---
kind: pipeline
type: docker
name: buildqpms-debian-preinstlibs
workspace:
path: /home/qpmsbuild/qpms
steps:
- name: chown
image: qpms/buildenv/debian/pkgdnumlib
pull: never
commands:
- chown -R qpmsbuild.qpmsbuild .
- name: submodules
image: qpms/buildenv/debian/pkgdnumlib
pull: never
user: qpmsbuild
commands:
- git submodule init
- git submodule update
- name: build
image: qpms/buildenv/debian/pkgdnumlib
pull: never
user: qpmsbuild
commands:
- cmake -DCMAKE_INSTALL_PREFIX=/home/qpmsbuild/.local .
- make install
- export LIBRARY_PATH=$HOME/.local/lib
- python3 setup.py install --user
- pip3 install --user matplotlib #needed to run the examples
- export LD_LIBRARY_PATH=$HOME/.local/lib
- cd examples/rectangular/modes
- ./01a_realfreq_svd.sh
- cd -
- cd examples/hexagonal/modes
#- ./01a_realfreq_svd.sh
#- ./01_compute_modes.sh
#- ./02b_compute_disp_0M.sh
#- ./02_compute_disp.sh
#- ./02x_compute_disp.sh

25
.gitignore vendored
View File

@ -5,29 +5,4 @@
*.pdf *.pdf
*.o *.o
docs/* docs/*
qpms/qpms_c.c qpms/qpms_c.c
qpms/cy*.c
CMakeCache.txt
CMakeFiles/*
faddeeva/*
qpms/CMakeFiles/*
qpms/libqpms.so
qpms/cmake_install.cmake
qpms_version.c
qpms.egg_info/*
dist/*
build/*
Makefile
CTestTestfile.cmake
amos/CMakeFiles/*
amos/Makefile
amos/amos_mangling.h
cmake_install.cmake
cython_debug/*
qpms.egg-info/*
tests/CmakeFiles/*
tests/cmake_install.cmake
tests/CMakeFiles/*

4
.gitmodules vendored
View File

@ -1,4 +0,0 @@
[submodule "camos"]
path = camos
url = https://codeberg.org/QPMS/zbessel.git
branch = purec

View File

@ -1,43 +0,0 @@
Overview of QPMS command line utilities
=======================================
The utilities are located in the `misc` directory. Run the
utility with `-h` argument to get more info.
Rectangular and square 2D lattices
----------------------------------
These scripts deal with simple 2D rectangular lattices,
finite or infinite, one scatterer per unit cell.
\f$ D_{2h} \f$ or \f$ D_{4h} \f$ symmetric adapted bases
are used where applicable.
### Finite lattices
* `finiterectlat-modes.py`: Search for resonances using Beyn's algorithm.
* `finiterectlat-scatter.py`: Plane wave scattering.
* `finiterectlat-constant-driving.py`: Rectangular array response to
a driving where a subset of particles are excited by basis VSWFs with the
same phase.
### Infinite lattices
* `rectlat_simple_modes.py`: Search for lattice modes using Beyn's algorithm.
* `infiniterectlat-k0realfreqsvd.py`:
Evaluate the lattice mode problem singular values at the Γ point for a real frequency interval.
Useful as a starting point in lattice mode search before using Beyn's algorithm.
* `infiniterectlat-scatter.py`: Plane wave scattering.
General 2D lattices
-------------------
### Infinite lattices
These can contain several scatterers per unit cell. Symmetry adapted bases currently not implemented.
* `lat2d_modes.py`: Search for lattice modes using Beyn's algorithm.
* `lat2d_realfreqsvd.py`:
Evaluate the lattice mode problem singular values at the Γ point for a real frequency interval.
Useful as a starting point in lattice mode search before using Beyn's algorithm.

View File

@ -1,16 +1,10 @@
cmake_minimum_required(VERSION 3.0.2) cmake_minimum_required(VERSION 3.0.2)
option(QPMS_USE_FORTRAN_AMOS "Use the original AMOS Fortran libraries instead of the C ones" OFF)
if (QPMS_USE_FORTRAN_AMOS)
include(CMakeAddFortranSubdirectory) include(CMakeAddFortranSubdirectory)
endif (QPMS_USE_FORTRAN_AMOS)
include(version.cmake) include(version.cmake)
include(GNUInstallDirs)
project (QPMS) project (QPMS)
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake/") set(CMAKE_BUILD_TYPE Debug)
macro(use_c99) macro(use_c99)
if (CMAKE_VERSION VERSION_LESS "3.1") if (CMAKE_VERSION VERSION_LESS "3.1")
@ -29,27 +23,9 @@ set(CMAKE_POSITION_INDEPENDENT_CODE ON)
set (QPMS_VERSION_MAJOR 0) set (QPMS_VERSION_MAJOR 0)
#set (QPMS_VERSION_MINOR 3) #set (QPMS_VERSION_MINOR 3)
cmake_add_fortran_subdirectory (amos
if (QPMS_USE_FORTRAN_AMOS)
cmake_add_fortran_subdirectory (amos
PROJECT amos PROJECT amos
LIBRARIES amos LIBRARIES amos
NO_EXTERNAL_INSTALL) NO_EXTERNAL_INSTALL)
set(QPMS_AMOSLIB amos)
else (QPMS_USE_FORTRAN_AMOS)
set(CAMOS_BUILD_STATIC ON)
add_subdirectory (camos)
set(QPMS_AMOSLIB camos)
endif (QPMS_USE_FORTRAN_AMOS)
set(FADDEEVA_BUILD_STATIC ON)
add_subdirectory(faddeeva)
add_subdirectory (qpms) add_subdirectory (qpms)
enable_testing()
add_subdirectory (tests EXCLUDE_FROM_ALL)
#add_subdirectory (apps/transop-ewald) #add_subdirectory (apps/transop-ewald)

View File

@ -1,675 +0,0 @@
### GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc.
<https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.
### Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom
to share and change all versions of a program--to make sure it remains
free software for all its users. We, the Free Software Foundation, use
the GNU General Public License for most of our software; it applies
also to any other work released this way by its authors. You can apply
it to your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you
have certain responsibilities if you distribute copies of the
software, or if you modify it: responsibilities to respect the freedom
of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the
manufacturer can do so. This is fundamentally incompatible with the
aim of protecting users' freedom to change the software. The
systematic pattern of such abuse occurs in the area of products for
individuals to use, which is precisely where it is most unacceptable.
Therefore, we have designed this version of the GPL to prohibit the
practice for those products. If such problems arise substantially in
other domains, we stand ready to extend this provision to those
domains in future versions of the GPL, as needed to protect the
freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish
to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL
assures that patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
### TERMS AND CONDITIONS
#### 0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds
of works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of
an exact copy. The resulting work is called a "modified version" of
the earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user
through a computer network, with no transfer of a copy, is not
conveying.
An interactive user interface displays "Appropriate Legal Notices" to
the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
#### 1. Source Code.
The "source code" for a work means the preferred form of the work for
making modifications to it. "Object code" means any non-source form of
a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users can
regenerate automatically from other parts of the Corresponding Source.
The Corresponding Source for a work in source code form is that same
work.
#### 2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not convey,
without conditions so long as your license otherwise remains in force.
You may convey covered works to others for the sole purpose of having
them make modifications exclusively for you, or provide you with
facilities for running those works, provided that you comply with the
terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for
you must do so exclusively on your behalf, under your direction and
control, on terms that prohibit them from making any copies of your
copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under the
conditions stated below. Sublicensing is not allowed; section 10 makes
it unnecessary.
#### 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such
circumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit
operation or modification of the work as a means of enforcing, against
the work's users, your or third parties' legal rights to forbid
circumvention of technological measures.
#### 4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
#### 5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these
conditions:
- a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
- b) The work must carry prominent notices stating that it is
released under this License and any conditions added under
section 7. This requirement modifies the requirement in section 4
to "keep intact all notices".
- c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
- d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
#### 6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of
sections 4 and 5, provided that you also convey the machine-readable
Corresponding Source under the terms of this License, in one of these
ways:
- a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
- b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the Corresponding
Source from a network server at no charge.
- c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
- d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
- e) Convey the object code using peer-to-peer transmission,
provided you inform other peers where the object code and
Corresponding Source of the work are being offered to the general
public at no charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal,
family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a
consumer product, doubtful cases shall be resolved in favor of
coverage. For a particular product received by a particular user,
"normally used" refers to a typical or common use of that class of
product, regardless of the status of the particular user or of the way
in which the particular user actually uses, or expects or is expected
to use, the product. A product is a consumer product regardless of
whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only significant
mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to
install and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source. The
information must suffice to ensure that the continued functioning of
the modified object code is in no case prevented or interfered with
solely because modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or
updates for a work that has been modified or installed by the
recipient, or for the User Product in which it has been modified or
installed. Access to a network may be denied when the modification
itself materially and adversely affects the operation of the network
or violates the rules and protocols for communication across the
network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
#### 7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders
of that material) supplement the terms of this License with terms:
- a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
- b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
- c) Prohibiting misrepresentation of the origin of that material,
or requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
- d) Limiting the use for publicity purposes of names of licensors
or authors of the material; or
- e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
- f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions
of it) with contractual assumptions of liability to the recipient,
for any liability that these contractual assumptions directly
impose on those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions; the
above requirements apply either way.
#### 8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
#### 9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run
a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
#### 10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
#### 11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims owned
or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within the
scope of its coverage, prohibits the exercise of, or is conditioned on
the non-exercise of one or more of the rights that are specifically
granted under this License. You may not convey a covered work if you
are a party to an arrangement with a third party that is in the
business of distributing software, under which you make payment to the
third party based on the extent of your activity of conveying the
work, and under which the third party grants, to any of the parties
who would receive the covered work from you, a discriminatory patent
license (a) in connection with copies of the covered work conveyed by
you (or copies made from those copies), or (b) primarily for and in
connection with specific products or compilations that contain the
covered work, unless you entered into that arrangement, or that patent
license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
#### 12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under
this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to
terms that obligate you to collect a royalty for further conveying
from those to whom you convey the Program, the only way you could
satisfy both those terms and this License would be to refrain entirely
from conveying the Program.
#### 13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
#### 14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions
of the GNU General Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program
specifies that a certain numbered version of the GNU General Public
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that numbered version or
of any later version published by the Free Software Foundation. If the
Program does not specify a version number of the GNU General Public
License, you may choose any version ever published by the Free
Software Foundation.
If the Program specifies that a proxy can decide which future versions
of the GNU General Public License can be used, that proxy's public
statement of acceptance of a version permanently authorizes you to
choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
#### 15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.
#### 16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR
CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
#### 17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
### How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these
terms.
To do so, attach the following notices to the program. It is safest to
attach them to the start of each source file to most effectively state
the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper
mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands \`show w' and \`show c' should show the
appropriate parts of the General Public License. Of course, your
program's commands might be different; for a GUI interface, you would
use an "about box".
You should also get your employer (if you work as a programmer) or
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. For more information on this, and how to apply and follow
the GNU GPL, see <https://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your
program into proprietary programs. If your program is a subroutine
library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the
GNU Lesser General Public License instead of this License. But first,
please read <https://www.gnu.org/licenses/why-not-lgpl.html>.

View File

@ -51,7 +51,7 @@ PROJECT_BRIEF = "Electromagnetic multiple scattering library and toolki
# and the maximum width should not exceed 200 pixels. Doxygen will copy the logo # and the maximum width should not exceed 200 pixels. Doxygen will copy the logo
# to the output directory. # to the output directory.
PROJECT_LOGO = farfield.png PROJECT_LOGO =
# The OUTPUT_DIRECTORY tag is used to specify the (relative or absolute) path # The OUTPUT_DIRECTORY tag is used to specify the (relative or absolute) path
# into which the generated documentation will be written. If a relative path is # into which the generated documentation will be written. If a relative path is
@ -753,7 +753,7 @@ WARN_LOGFILE =
# spaces. # spaces.
# Note: If this tag is empty the current directory is searched. # Note: If this tag is empty the current directory is searched.
INPUT = qpms notes misc finite_systems.md MIRRORS.md CLIUTILS.md README.md README.Triton.md finite_systems.md lattices.md TODO.md INPUT = qpms notes finite_systems.md README.md README.Triton.md finite_systems.md lattices.md TODO.md
# This tag can be used to specify the character encoding of the source files # This tag can be used to specify the character encoding of the source files
# that doxygen parses. Internally doxygen uses the UTF-8 encoding. Doxygen uses # that doxygen parses. Internally doxygen uses the UTF-8 encoding. Doxygen uses
@ -1462,7 +1462,7 @@ MATHJAX_FORMAT = HTML-CSS
# The default value is: http://cdn.mathjax.org/mathjax/latest. # The default value is: http://cdn.mathjax.org/mathjax/latest.
# This tag requires that the tag USE_MATHJAX is set to YES. # This tag requires that the tag USE_MATHJAX is set to YES.
MATHJAX_RELPATH = https://uslugi.necada.org/js/mathjax MATHJAX_RELPATH = http://cdn.mathjax.org/mathjax/latest
# The MATHJAX_EXTENSIONS tag can be used to specify one or more MathJax # The MATHJAX_EXTENSIONS tag can be used to specify one or more MathJax
# extension names that should be enabled during MathJax rendering. For example # extension names that should be enabled during MathJax rendering. For example

View File

@ -1,14 +0,0 @@
QPMS source code mirrors
========================
QPMS source code is available at several locations; in all of the following,
upstream `master` branch is kept up-to-date. Various development branches
are not necessarily pushed everywhere (and they should be considered
unstable in the sense that rebases and forced pushes are possible).
mirror | note | provider | backend
----------------------------------------------- | ----------------------- | ------------------------------------------------- | ------
<https://repo.or.cz/qpms.git> | primary public upstream | [repo.or.cz](https://repo.or.cz/) | girocco
<https://codeberg.org/QPMS/qpms> | | [Codeberg](https://codeberg.org) | gitea
<https://git.piraattipuolue.fi/QPMS/qpms.git> | | [Pirate Party Finland](https://piraattipuolue.fi) | gitea
<https://version.aalto.fi/gitlab/qpms/qpms.git> | | [Aalto University](https://aalto.fi) | gitlab

145
README.md
View File

@ -1,14 +1,10 @@
[![Build Status](https://drone.perkele.eu/api/badges/QPMS/qpms/status.svg)](https://drone.perkele.eu/QPMS/qpms)
QPMS README QPMS README
=========== ===========
[QPMS][homepage] (standing for QPMS Photonic Multiple Scattering) QPMS is a toolkit for frequency-domain simulations of photonic systems
is a toolkit for frequency-domain simulations of photonic systems
consisting of compact objects (particles) inside a homogeneous medium. Scattering consisting of compact objects (particles) inside a homogeneous medium. Scattering
properties of the individual particles are described by their T-matrices properties of the individual particles are described by their T-matrices
(which can be obtained using one of the built-in generators or (which can be obtained e.g. with the `scuff-tmatrix` tool from
e.g. with the `scuff-tmatrix` tool from
the [SCUFF-EM] suite). the [SCUFF-EM] suite).
QPMS handles the multiple scattering of electromagnetic radiation between QPMS handles the multiple scattering of electromagnetic radiation between
@ -16,39 +12,26 @@ the particles. The system can consist either of a finite number of particles
or an infinite number of periodically arranged lattices (with finite number or an infinite number of periodically arranged lattices (with finite number
of particles in a single unit cell). of particles in a single unit cell).
Features Features
======== ========
Finite systems Finite systems
-------------- --------------
* Computing multipole excitations and fields scattered from nanoparticle * Computing multipole excitations *and fields (TODO)* scattered from nanoparticle
clusters illuminated by plane, spherical or *cylindrical (TODO)* waves. clusters illuminated by plane, spherical or *cylindrical (TODO)* waves.
* Finding eigenmodes (optical resonances). * Finding eigenmodes.
* Calculating cross sections. * *Calculating cross sections (TODO).*
* Reducing numerical complexity of the computations by exploiting * Reducing numerical complexity of the computations by exploiting
symmetries of the cluster (decomposition to irreducible representations). symmetries of the cluster (decomposition to irreducible representations).
Infinite systems (lattices) Infinite systems (lattices)
--------------------------- ---------------------------
* 2D-periodic systems with arbitrary unit cell geometry supported. (TODO 1D and 3D.) * 2D-periodic systems supported. (TODO 1D and 3D.)
* Computing multipole excitations and fields scattered from nanoparticle * *Calculation of transmission and reflection properties (TODO).*
* Finding eigenmodes and calculating dispersion relations. * Finding eigenmodes and calculating dispersion relations.
* Calculation of the scattered fields. * *Calculation of far-field radiation patterns of an excited array (TODO).*
* *Calculation of total transmission and reflection properties (TODO).* * Reducing numerical complexity of the computations by exploiting
* *Reducing numerical complexity of the computations by exploiting symmetries of the lattice (decomposition to irreducible representations).
symmetries of the lattice (decomposition to irreducible representations) (in development).*
Getting the code
================
The codebase is available at the main upstream public repository
<https://repo.or.cz/qpms.git> or any of the [maintained mirrors][MIRRORS].
Just clone the repository with `git` and proceed to the installation instructions
below.
Installation Installation
@ -64,49 +47,30 @@ you can [get the source and compile it yourself][GSL].
You also need a fresh enough version of [cmake][]. You also need a fresh enough version of [cmake][].
QPMS uses a C version of the Amos library for calculating Bessel function After GSL is installed, you can install qpms to your local python library using::
from a submodule. Before proceeding with running `cmake`, the submodules
need to be downloaded first (in the QPMS source root directory):
```{.sh} ```{.sh}
git submodule init cmake .
git submodule update make amos
```
After GSL is installed and submodules updated, you can install qpms to your local python library using
```{.sh}
cmake -DCMAKE_INSTALL_PREFIX=${YOUR_PREFIX} .
make install
python3 setup.py install --user python3 setup.py install --user
``` ```
Above, replace `${YOUR_PREFIX}` with the path to where you want to install the shared library;
you will also need to make sure that the linker can find it;
on Linux, this means the path `${YOUR_PREFIX}/lib` is included in your
`LIBRARY_PATH` and `LD_LIBRARY_PATH` environment variables. The same applies
to the GSL and OpenBLAS dependencies: they must be installed where the
installation scripts and linker can find them (setting the `C_INCLUDE_PATH` environment
variable might be necessary as well).
Special care might need to be taken when installing QPMS in cluster environments. If GSL is not installed the standard library path on your system, you might
need to pass it to the installation script using the
`LIBRARY_PATH` and `LD_LIBRARY_PATH` environment
variables.
Special care has often be taken when installing QPMS in cluster environments.
Specific installation instructions for Aalto University's Triton cluster Specific installation instructions for Aalto University's Triton cluster
can be found in a [separate document][TRITON-README]. can be found in a [separate document][TRITON-README].
Instructions for installation on Android-based devices are
in [another document][INSTALL-ANDROID].
Documentation Documentation
============= =============
[QPMS documentation][homepage] is a work in progress. Most of the newer code Documentation of QPMS is a work in progress. Most of the newer code
is documented using [doxygen][] comments. Documentation generated for the is documented using [doxygen][] comments. To build the documentation, just run
upstream version is hosted on the QPMS homepage <https://qpms.necada.org>.
To build the documentation yourself,
just run
`doxygen` `doxygen`
in the QPMS source root directory; the documentation will then be found in in the root directory; the documentation will then be found in
`docs/html/index.html`. `docs/html/index.html`.
Of course, the prerequisite of this is having doxygen installed. Of course, the prerequisite of this is having doxygen installed.
@ -118,77 +82,14 @@ under root.
Tutorials Tutorials
--------- ---------
* [Infinite system (lattice) tutorial][tutorial-infinite]
* [Finite system tutorial][tutorial-finite] * [Finite system tutorial][tutorial-finite]
See also the examples directory in the source repository.
Command line utilities
----------------------
* [Overview of the Python command line utilities][cliutils]
Acknowledgments
================
This software has been developed in the [Quantum Dynamics research group][QD],
Aalto University, Finland. If you use the code in your work, please cite
**M. Nečada and P. Törmä, Multiple-scattering T-matrix simulations for nanophotonics: symmetries and periodic lattices, [arXiv: 2006.12968][lepaper] (2020)**
in your publications, presentations, and similar.
Please also have a look at other publications by the group
(google scholar Päivi Törmä), they may be useful for your work as well.
Bug reports
===========
If you believe that some parts of QPMS behave incorrectly, please mail
a bug report to [marek@necada.org][authormail]. To ensure that your message is not
considered spam, please start the subject line with `QPMS`.
If you were able to fix a bug yourself, please include the patch as well,
see below.
Contributions
=============
Contributions to QPMS are welcome, be it bug fixes, improvements to the
documentation, code quality, or new features.
You can send patches prepared using the
[`git format-patch`](https://git-scm.com/docs/git-format-patch) tool
to [marek@necada.org][authormail].
If you plan to contribute with major changes to the codebase, it is
recommended to discuss that first (see the contact information below).
Contact & discussion
====================
You can contact the main author e.g. via [e-mail][authormail]
or [Telegram](https://t.me/necadam).
You are also warmly welcome to the [QPMS user chat][telegramchat]
in Telegram!
[homepage]: https://qpms.necada.org
[SCUFF-EM]: https://homerreid.github.io/scuff-em-documentation/ [SCUFF-EM]: https://homerreid.github.io/scuff-em-documentation/
[OpenBLAS]: https://www.openblas.net/ [OpenBLAS]: https://www.openblas.net/
[GSL]: https://www.gnu.org/software/gsl/ [GSL]: https://www.gnu.org/software/gsl/
[cmake]: https://cmake.org [cmake]: https://cmake.org
[TRITON-README]: README.Triton.md [TRITON-README]: README.Triton.md
[INSTALL-ANDROID]: notes/INSTALL_ANDROID.md
[tutorial-finite]: finite_systems.md [tutorial-finite]: finite_systems.md
[tutorial-infinite]: lattices.md [tutorial-infinite]: lattices.md
[doxygen]: http://doxygen.nl/ [doxygen]: http://doxygen.nl/
[QD]: https://www.aalto.fi/en/department-of-applied-physics/quantum-dynamics-qd
[lepaper]: https://arxiv.org/abs/2006.12968
[telegramchat]: https://t.me/QPMScattering
[authormail]: mailto:marek@necada.org
[cliutils]: CLIUTILS.md
[MIRRORS]: MIRRORS.md

30
TODO.md
View File

@ -1,12 +1,11 @@
TODO list before 1.0 release TODO list before public release
============================ ===============================
- Tests! - Tests!
- Docs! - Docs!
- Cross section calculations. (Done in some Python scripts.) - Cross section calculations.
- Field calculations. (Partly done, needs more testing.) - Field calculations.
* Also test periodic vs. nonperiodic consistence (big finite lattice + absorbing medium vs. infinite lattice + absorbing medium). - Complex frequencies, n's, k's.
- Complex frequencies, n's, k's. (Mostly done.)
- Transforming point (meta)generators. - Transforming point (meta)generators.
- Check whether moble's quaternions and my - Check whether moble's quaternions and my
quaternions give the same results in tmatrices.py quaternions give the same results in tmatrices.py
@ -25,12 +24,8 @@ TODO list before 1.0 release
* As a description of a T-matrix / particle metadata. * As a description of a T-matrix / particle metadata.
- Nice CLI for all general enough utilities. - Nice CLI for all general enough utilities.
- Remove legacy code. - Remove legacy code.
- Split `qpms_c.pyx`. - Split qpms_c.pyx.
- Reduce compiler warnings. - Reduce compiler warnings.
- Serialisation (saving, loading) of `ScatteringSystem` and other structures.
- Python exceptions instead of hard crashes in the C library where possible.
- Scatsystem init sometimes fail due to rounding errors and hardcoded absolute tolerance
in the `qpms_tmatrix_isclose()` call.
- Prefix all identifiers. Maybe think about a different prefix than qpms? - Prefix all identifiers. Maybe think about a different prefix than qpms?
- Consistent indentation and style overall. - Consistent indentation and style overall.
- Rewrite the parallelized translation matrix, mode problem matrix generators - Rewrite the parallelized translation matrix, mode problem matrix generators
@ -41,16 +36,3 @@ Nice but less important features
- Static, thread-safe caches of constant coefficients + API without the current "calculators". - Static, thread-safe caches of constant coefficients + API without the current "calculators".
Optimisations
-------------
- Leaving out the irrelevant elements if a "rectangular" block of the translations matrix is needed.
- Ewald sums with "non-parallel" shifts (are about 20 times slower than the purely parallel ones).
- Reusing intermediate results (profiling needed)
* Bessel, Legendre functions (see also branch `finite_lattice_speedup`)
* Lattice points (sorting and scaling)
* Γ/Δ functions (for periodic lattices)
- More parallelisation.
- Possibly pre-calculation of the (precise) coefficients in Bessel and Legendre functions (using gmp)
- Asymptotic approximations of the Bessel functions for far fields.

View File

@ -1,30 +0,0 @@
#ifndef CAMOS_H_
#define CAMOS_H_
#include "amos.h"
// TODO what about all the INTEGER_t and DOUBLE_PRECISION_t?
static inline int camos_zbesh(double zr, double zi, double fnu, int kode, int m,
int n, double *cyr, double *cyi, int *nz) {
int ierr;
amos_zbesh(&zr, &zi, &fnu, &kode, &m, &n, cyr, cyi, nz, &ierr);
return ierr;
}
static inline int camos_zbesj(double zr, double zi, double fnu, int kode, int n, double *cyr,
double *cyi, int *nz) {
int ierr;
double cwrkr[n], cwrki[n];
amos_zbesj(&zr, &zi, &fnu, &kode, &n, cyr, cyi, nz, &ierr);
return ierr;
}
static inline int camos_zbesy(double zr, double zi, double fnu, int kode, int n, double *cyr,
double *cyi, int *nz, double *cwrkr, double *cwrki) {
int ierr;
amos_zbesy(&zr, &zi, &fnu, &kode, &n, cyr, cyi, nz, cwrkr, cwrki, &ierr);
return ierr;
}
#endif // CAMOS_H_

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -1,2 +0,0 @@
((k^2*(-3 + Sqrt[1 + k^2/(c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2)/Sqrt[1 + k^2/(c - I*k0)^2] - (2*(k^2*(-3 + Sqrt[1 + k^2/(2*c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2))/Sqrt[1 + k^2/(2*c - I*k0)^2] + (k^2*(-3 + Sqrt[1 + k^2/(3*c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2)/Sqrt[1 + k^2/(3*c - I*k0)^2])/(k^3*k0)
SeriesData[k, Infinity, {(8*c^2)/(k*k0), (-15*(2*c^3 - I*c^2*k0))/(k*k0), 0, (35*(18*c^5 - (25*I)*c^4*k0 - 12*c^3*k0^2 + (2*I)*c^2*k0^3))/(4*k*k0), 0, (63*(-138*c^7 + (301*I)*c^6*k0 + 270*c^5*k0^2 - (125*I)*c^4*k0^3 - 30*c^3*k0^4 + (3*I)*c^2*k0^5))/(8*k*k0), 0, (165*(3110*c^9 - (9075*I)*c^8*k0 - 11592*c^7*k0^2 + (8428*I)*c^6*k0^3 + 3780*c^5*k0^4 - (1050*I)*c^4*k0^5 - 168*c^3*k0^6 + (12*I)*c^2*k0^7))/(64*k*k0)}, 2, 11, 1]

View File

@ -1,2 +0,0 @@
((k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4)/(Sqrt[1 + k^2/(c - I*k0)^2]*(c - I*k0)) - (2*(k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4))/(Sqrt[1 + k^2/(2*c - I*k0)^2]*(2*c - I*k0)) + (k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4)/(Sqrt[1 + k^2/(3*c - I*k0)^2]*(3*c - I*k0)))/(k^4*k0)
SeriesData[k, Infinity, {(15*c^2)/(k*k0), (-48*(2*c^3 - I*c^2*k0))/(k*k0), (35*(25*c^4 - (24*I)*c^3*k0 - 6*c^2*k0^2))/(4*k*k0), 0, (-21*(301*c^6 - (540*I)*c^5*k0 - 375*c^4*k0^2 + (120*I)*c^3*k0^3 + 15*c^2*k0^4))/(8*k*k0), 0, (-99*(-3025*c^8 + (7728*I)*c^7*k0 + 8428*c^6*k0^2 - (5040*I)*c^5*k0^3 - 1750*c^4*k0^4 + (336*I)*c^3*k0^5 + 28*c^2*k0^6))/(64*k*k0), 0, (-143*(28501*c^10 - (93300*I)*c^9*k0 - 136125*c^8*k0^2 + (115920*I)*c^7*k0^3 + 63210*c^6*k0^4 - (22680*I)*c^5*k0^5 - 5250*c^4*k0^6 + (720*I)*c^3*k0^7 + 45*c^2*k0^8))/(128*k*k0)}, 2, 11, 1]

View File

@ -1,2 +0,0 @@
((k^4*(-5 + Sqrt[1 + k^2/(c - I*k0)^2]) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 16*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4)/Sqrt[1 + k^2/(c - I*k0)^2] - (2*(k^4*(-5 + Sqrt[1 + k^2/(2*c - I*k0)^2]) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 16*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4))/Sqrt[1 + k^2/(2*c - I*k0)^2] + (k^4*(-5 + Sqrt[1 + k^2/(3*c - I*k0)^2]) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 16*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4)/Sqrt[1 + k^2/(3*c - I*k0)^2])/(k^5*k0)
SeriesData[k, Infinity, {(24*c^2)/(k*k0), (-105*(2*c^3 - I*c^2*k0))/(k*k0), (32*(25*c^4 - (24*I)*c^3*k0 - 6*c^2*k0^2))/(k*k0), (-315*(18*c^5 - (25*I)*c^4*k0 - 12*c^3*k0^2 + (2*I)*c^2*k0^3))/(4*k*k0), 0, (231*(138*c^7 - (301*I)*c^6*k0 - 270*c^5*k0^2 + (125*I)*c^4*k0^3 + 30*c^3*k0^4 - (3*I)*c^2*k0^5))/(8*k*k0), 0, (429*(-3110*c^9 + (9075*I)*c^8*k0 + 11592*c^7*k0^2 - (8428*I)*c^6*k0^3 - 3780*c^5*k0^4 + (1050*I)*c^4*k0^5 + 168*c^3*k0^6 - (12*I)*c^2*k0^7))/(64*k*k0)}, 2, 11, 1]

View File

@ -1,2 +0,0 @@
((k^6 - 6*k^4*(-3 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 16*k^2*(3 - 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 - 32*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6)/(Sqrt[1 + k^2/(c - I*k0)^2]*(c - I*k0)) - (2*(k^6 - 6*k^4*(-3 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 16*k^2*(3 - 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 - 32*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6))/(Sqrt[1 + k^2/(2*c - I*k0)^2]*(2*c - I*k0)) + (k^6 - 6*k^4*(-3 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 16*k^2*(3 - 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 - 32*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6)/(Sqrt[1 + k^2/(3*c - I*k0)^2]*(3*c - I*k0)))/(k^6*k0)
SeriesData[k, Infinity, {(35*c^2)/(k*k0), (-192*(2*c^3 - I*c^2*k0))/(k*k0), (315*(25*c^4 - (24*I)*c^3*k0 - 6*c^2*k0^2))/(4*k*k0), (-320*(18*c^5 - (25*I)*c^4*k0 - 12*c^3*k0^2 + (2*I)*c^2*k0^3))/(k*k0), (231*(301*c^6 - (540*I)*c^5*k0 - 375*c^4*k0^2 + (120*I)*c^3*k0^3 + 15*c^2*k0^4))/(8*k*k0), 0, (429*(-3025*c^8 + (7728*I)*c^7*k0 + 8428*c^6*k0^2 - (5040*I)*c^5*k0^3 - 1750*c^4*k0^4 + (336*I)*c^3*k0^5 + 28*c^2*k0^6))/(64*k*k0), 0, (429*(28501*c^10 - (93300*I)*c^9*k0 - 136125*c^8*k0^2 + (115920*I)*c^7*k0^3 + 63210*c^6*k0^4 - (22680*I)*c^5*k0^5 - 5250*c^4*k0^6 + (720*I)*c^3*k0^7 + 45*c^2*k0^8))/(128*k*k0)}, 2, 11, 1]

View File

@ -1,2 +0,0 @@
((k^6*(-7 + Sqrt[1 + k^2/(c - I*k0)^2]) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 + 64*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6)/Sqrt[1 + k^2/(c - I*k0)^2] - (2*(k^6*(-7 + Sqrt[1 + k^2/(2*c - I*k0)^2]) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 + 64*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6))/Sqrt[1 + k^2/(2*c - I*k0)^2] + (k^6*(-7 + Sqrt[1 + k^2/(3*c - I*k0)^2]) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 + 64*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6)/Sqrt[1 + k^2/(3*c - I*k0)^2])/(k^7*k0)
SeriesData[k, Infinity, {(48*c^2)/(k*k0), (-315*(2*c^3 - I*c^2*k0))/(k*k0), (160*(25*c^4 - (24*I)*c^3*k0 - 6*c^2*k0^2))/(k*k0), (-3465*(18*c^5 - (25*I)*c^4*k0 - 12*c^3*k0^2 + (2*I)*c^2*k0^3))/(4*k*k0), (128*(301*c^6 - (540*I)*c^5*k0 - 375*c^4*k0^2 + (120*I)*c^3*k0^3 + 15*c^2*k0^4))/(k*k0), (3003*(-138*c^7 + (301*I)*c^6*k0 + 270*c^5*k0^2 - (125*I)*c^4*k0^3 - 30*c^3*k0^4 + (3*I)*c^2*k0^5))/(8*k*k0), 0, (2145*(3110*c^9 - (9075*I)*c^8*k0 - 11592*c^7*k0^2 + (8428*I)*c^6*k0^3 + 3780*c^5*k0^4 - (1050*I)*c^4*k0^5 - 168*c^3*k0^6 + (12*I)*c^2*k0^7))/(64*k*k0)}, 2, 11, 1]

View File

View File

@ -1,2 +0,0 @@
((-2*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0))/k + ((-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0))/k + (Sqrt[Pi]*(Piecewise[{{0, k^2/k0^2 <= 1}}, (2*Sqrt[k^2 - k0^2])/(k*Sqrt[Pi])] + I*Piecewise[{{(2*k0)/(k*Sqrt[Pi]), k0^2/k^2 < 1}, {(2*(k0 - Sqrt[-k^2 + k0^2]))/(k*Sqrt[Pi]), k0^2/k^2 > 1}}, 0]))/2)/k0^2
Piecewise[{{SeriesData[k, Infinity, {c^2/k0^2, 0, (3*c^2)/2 - (7*c^4)/(4*k0^2) + ((3*I)*c^3)/k0, 0, (31*c^6 - (90*I)*c^5*k0 - 105*c^4*k0^2 + (60*I)*c^3*k0^3 + 15*c^2*k0^4)/(8*k0^2), 0, (-5*(127*c^8 - (504*I)*c^7*k0 - 868*c^6*k0^2 + (840*I)*c^5*k0^3 + 490*c^4*k0^4 - (168*I)*c^3*k0^5 - 28*c^2*k0^6))/(64*k0^2), 0, (7*(511*c^10 - (2550*I)*c^9*k0 - 5715*c^8*k0^2 + (7560*I)*c^7*k0^3 + 6510*c^6*k0^4 - (3780*I)*c^5*k0^5 - 1470*c^4*k0^6 + (360*I)*c^3*k0^7 + 45*c^2*k0^8))/(128*k0^2)}, 2, 11, 1], (k0 <= 0 && k^2/k0^2 > 1) || k0 > 0}}, SeriesData[k, Infinity, {-k0^(-2), 0, (2*c^2 + k0^2)/(2*k0^2), 0, ((c*(c - I*k0)^3)/4 - (c*(2*c - I*k0)^3)/4 - I/4*(c - I*k0)^3*k0 + I/8*(2*c - I*k0)^3*k0)/k0^2, 0, (-(c*(c - I*k0)^5)/8 + (c*(2*c - I*k0)^5)/8 + I/8*(c - I*k0)^5*k0 - I/16*(2*c - I*k0)^5*k0)/k0^2, 0, ((5*c*(c - I*k0)^7)/64 - (5*c*(2*c - I*k0)^7)/64 - (5*I)/64*(c - I*k0)^7*k0 + (5*I)/128*(2*c - I*k0)^7*k0)/k0^2, 0, ((-7*c*(c - I*k0)^9)/128 + (7*c*(2*c - I*k0)^9)/128 + (7*I)/128*(c - I*k0)^9*k0 - (7*I)/256*(2*c - I*k0)^9*k0)/k0^2}, 0, 11, 1]]

View File

@ -1,2 +0,0 @@
(-1 + (4*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2)/k^2 - (2*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2)/k^2 + Sqrt[Pi]*(I*Piecewise[{{0, k^2/k0^2 <= 1}}, (2*k0*Sqrt[k^2 - k0^2])/(k^2*Sqrt[Pi])] + Piecewise[{{(k^2 + 2*k0*(-k0 + Sqrt[-k^2 + k0^2]))/(k^2*Sqrt[Pi]), k^2/k0^2 < 1}, {(1 - (2*k0^2)/k^2)/Sqrt[Pi], k^2/k0^2 > 1}}, 0]))/(2*k0^2)
SeriesData[k, Infinity, {(2*c^2)/k0^2, (-3*(c^3 - I*c^2*k0))/k0^2, 0, (5*(3*c^5 - (7*I)*c^4*k0 - 6*c^3*k0^2 + (2*I)*c^2*k0^3))/(4*k0^2), 0, (-7*(9*c^7 - (31*I)*c^6*k0 - 45*c^5*k0^2 + (35*I)*c^4*k0^3 + 15*c^3*k0^4 - (3*I)*c^2*k0^5))/(8*k0^2), 0, (15*(85*c^9 - (381*I)*c^8*k0 - 756*c^7*k0^2 + (868*I)*c^6*k0^3 + 630*c^5*k0^4 - (294*I)*c^4*k0^5 - 84*c^3*k0^6 + (12*I)*c^2*k0^7))/(64*k0^2)}, 2, 11, 1]

View File

@ -1,2 +0,0 @@
(k^2*(-3 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 4*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 - 2*k^2*(-3 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) - 8*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + k^2*(-3 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 4*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3)/(3*k^3*k0^2)
SeriesData[k, Infinity, {(3*c^2)/k0^2, (-16*c^3)/k0^2 + ((8*I)*c^2)/k0, (-15*c^2)/2 + (125*c^4)/(4*k0^2) - ((30*I)*c^3)/k0, 0, (-7*(301*c^6 - (540*I)*c^5*k0 - 375*c^4*k0^2 + (120*I)*c^3*k0^3 + 15*c^2*k0^4))/(24*k0^2), 0, (9*(3025*c^8 - (7728*I)*c^7*k0 - 8428*c^6*k0^2 + (5040*I)*c^5*k0^3 + 1750*c^4*k0^4 - (336*I)*c^3*k0^5 - 28*c^2*k0^6))/(64*k0^2), 0, (-11*(28501*c^10 - (93300*I)*c^9*k0 - 136125*c^8*k0^2 + (115920*I)*c^7*k0^3 + 63210*c^6*k0^4 - (22680*I)*c^5*k0^5 - 5250*c^4*k0^6 + (720*I)*c^3*k0^7 + 45*c^2*k0^8))/(128*k0^2)}, 2, 11, 1]

View File

@ -1,2 +0,0 @@
-(2*k^2*(-2 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 4*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 + 2*k^2*(-2 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 4*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4)/(2*k^4*k0^2)
SeriesData[k, Infinity, {(4*c^2)/k0^2, (-30*c^3)/k0^2 + ((15*I)*c^2)/k0, -24*c^2 + (100*c^4)/k0^2 - ((96*I)*c^3)/k0, 105*c^3 - (315*c^5)/(2*k0^2) + ((875*I)/4*c^4)/k0 - (35*I)/2*c^2*k0, 0, (21*(138*c^7 - (301*I)*c^6*k0 - 270*c^5*k0^2 + (125*I)*c^4*k0^3 + 30*c^3*k0^4 - (3*I)*c^2*k0^5))/(8*k0^2), 0, (-33*(3110*c^9 - (9075*I)*c^8*k0 - 11592*c^7*k0^2 + (8428*I)*c^6*k0^3 + 3780*c^5*k0^4 - (1050*I)*c^4*k0^5 - 168*c^3*k0^6 + (12*I)*c^2*k0^7))/(64*k0^2)}, 2, 11, 1]

View File

@ -1,2 +0,0 @@
(-2*(k^4*(-5 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 16*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5) + k^4*(-5 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 16*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5 + k^4*(-5 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 16*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5)/(5*k^5*k0^2)
SeriesData[k, Infinity, {(5*c^2)/k0^2, (-24*(2*c^3 - I*c^2*k0))/k0^2, (35*(25*c^4 - (24*I)*c^3*k0 - 6*c^2*k0^2))/(4*k0^2), (-32*(18*c^5 - (25*I)*c^4*k0 - 12*c^3*k0^2 + (2*I)*c^2*k0^3))/k0^2, (21*(301*c^6 - (540*I)*c^5*k0 - 375*c^4*k0^2 + (120*I)*c^3*k0^3 + 15*c^2*k0^4))/(8*k0^2), 0, ((-165*(c - I*k0)^8)/128 + (165*(2*c - I*k0)^8)/64 - (165*(3*c - I*k0)^8)/128)/(5*k0^2), 0, ((143*(c - I*k0)^10)/256 - (143*(2*c - I*k0)^10)/128 + (143*(3*c - I*k0)^10)/256)/(5*k0^2)}, 2, 11, 1]

View File

@ -1,2 +0,0 @@
(-3*k^4*(-3 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 8*k^2*(3 - 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 - 16*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6 + 6*k^4*(-3 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 16*k^2*(-3 + 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 + 32*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6 - 3*k^4*(-3 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 8*k^2*(3 - 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 - 16*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6)/(3*k^6*k0^2)
SeriesData[k, Infinity, {(6*c^2)/k0^2, (-35*(2*c^3 - I*c^2*k0))/k0^2, (16*(25*c^4 - (24*I)*c^3*k0 - 6*c^2*k0^2))/k0^2, (-315*(18*c^5 - (25*I)*c^4*k0 - 12*c^3*k0^2 + (2*I)*c^2*k0^3))/(4*k0^2), (16*(c - I*k0)^6 - 32*(2*c - I*k0)^6 + 16*(3*c - I*k0)^6)/(3*k0^2), ((-99*(c - I*k0)^7)/16 + (99*(2*c - I*k0)^7)/8 - (99*(3*c - I*k0)^7)/16)/(3*k0^2), 0, ((143*(c - I*k0)^9)/128 - (143*(2*c - I*k0)^9)/64 + (143*(3*c - I*k0)^9)/128)/(3*k0^2)}, 2, 11, 1]

View File

@ -1,2 +0,0 @@
(-2*(k^6*(-7 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^7) + k^6*(-7 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^7 + k^6*(-7 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^7)/(7*k^7*k0^2)
SeriesData[k, Infinity, {(7*c^2)/k0^2, (-48*(2*c^3 - I*c^2*k0))/k0^2, (105*(25*c^4 - (24*I)*c^3*k0 - 6*c^2*k0^2))/(4*k0^2), (-160*(18*c^5 - (25*I)*c^4*k0 - 12*c^3*k0^2 + (2*I)*c^2*k0^3))/k0^2, (231*(301*c^6 - (540*I)*c^5*k0 - 375*c^4*k0^2 + (120*I)*c^3*k0^3 + 15*c^2*k0^4))/(8*k0^2), (-64*(c - I*k0)^7 + 128*(2*c - I*k0)^7 - 64*(3*c - I*k0)^7)/(7*k0^2), ((3003*(c - I*k0)^8)/128 - (3003*(2*c - I*k0)^8)/64 + (3003*(3*c - I*k0)^8)/128)/(7*k0^2), 0, ((-1001*(c - I*k0)^10)/256 + (1001*(2*c - I*k0)^10)/128 - (1001*(3*c - I*k0)^10)/256)/(7*k0^2)}, 2, 11, 1]

View File

View File

@ -1,9 +0,0 @@
Integrate[(E^(I*k0*x)*(-1 + E^(-(c*x)))^2*BesselJ[1, k*x])/(k0^3*x^2), {x, 0, Infinity}, Assumptions -> n == 1 && q == 3 && κ == 2]
-2 c x + I k0 x c x 2 2 2 4 4 6 6 8 8 Pi 2 2 4 4 6 6 8 8 Pi
-(E (-1 + E ) (8 k x (-14783093325 + 1452971520 k x - 309657600 k x + 251658240 k x + 2147483648 k x ) Cos[-- + k x] - 3 (156043762875 - 11416204800 k x + 1589575680 k x - 587202560 k x + 2147483648 k x ) Sin[-- + k x]))
4 4
Integrate::idiv: Integral of ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ does not converge on {0, Infinity}.
19/2 3 23/2
8589934592 k k0 Sqrt[2 Pi] x
Series[Integrate[(E^(I*k0*x)*(-1 + E^(-(c*x)))^2*BesselJ[1, k*x])/(k0^3*x^2), {x, 0, Infinity}, Assumptions -> n == 1 && q == 3 && κ == 2], {k, Infinity, 10}]

View File

@ -1,2 +0,0 @@
(-4*(-3 + 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) - (8*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3)/k^2 + 2*(-3 + 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + (4*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3)/k^2 + 3*k0*Sqrt[Pi]*(Piecewise[{{0, k^2/k0^2 <= 1}}, (4*(k^2 - k0^2)^(3/2))/(3*k^2*k0*Sqrt[Pi])] + I*Piecewise[{{(-2*(2*k0*(k0 - Sqrt[-k^2 + k0^2]) + k^2*(-3 + (2*Sqrt[-k^2 + k0^2])/k0)))/(3*k^2*Sqrt[Pi]), k^2/k0^2 < 1}, {(2*(1 - (2*k0^2)/(3*k^2)))/Sqrt[Pi], k^2/k0^2 > 1}}, 0]))/(12*k0^3)
SeriesData[k, Infinity, {c^2/k0^3, (-2*(c^3 - I*c^2*k0))/k0^3, (7*c^4 - (12*I)*c^3*k0 - 6*c^2*k0^2)/(4*k0^3), 0, (-31*c^6 + (90*I)*c^5*k0 + 105*c^4*k0^2 - (60*I)*c^3*k0^3 - 15*c^2*k0^4)/(24*k0^3), 0, (127*c^8 - (504*I)*c^7*k0 - 868*c^6*k0^2 + (840*I)*c^5*k0^3 + 490*c^4*k0^4 - (168*I)*c^3*k0^5 - 28*c^2*k0^6)/(64*k0^3), 0, (-511*c^10 + (2550*I)*c^9*k0 + 5715*c^8*k0^2 - (7560*I)*c^7*k0^3 - 6510*c^6*k0^4 + (3780*I)*c^5*k0^5 + 1470*c^4*k0^6 - (360*I)*c^3*k0^7 - 45*c^2*k0^8)/(128*k0^3)}, 1, 11, 1]

View File

@ -1,2 +0,0 @@
(k^2*(3 - 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 - 2*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 + 2*k^2*(-3 + 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 4*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 + k^2*(3 - 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 - 2*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4)/(6*k^3*k0^3)
SeriesData[k, Infinity, {c^2/k0^3, (-3*(2*c^3 - I*c^2*k0))/k0^3, (2*(25*c^4 - (24*I)*c^3*k0 - 6*c^2*k0^2))/(3*k0^3), (-5*(18*c^5 - (25*I)*c^4*k0 - 12*c^3*k0^2 + (2*I)*c^2*k0^3))/(4*k0^3), 0, ((c - I*k0)^7/8 - (2*c - I*k0)^7/4 + (3*c - I*k0)^7/8)/(6*k0^3), 0, ((-3*(c - I*k0)^9)/64 + (3*(2*c - I*k0)^9)/32 - (3*(3*c - I*k0)^9)/64)/(6*k0^3), 0, ((3*(c - I*k0)^11)/128 - (3*(2*c - I*k0)^11)/64 + (3*(3*c - I*k0)^11)/128)/(6*k0^3)}, 1, 11, 1]

View File

@ -1,2 +0,0 @@
(-2*(k^4*(-15 + 4*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5) + k^4*(-15 + 4*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5 + k^4*(-15 + 4*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5)/(60*k^4*k0^3)
SeriesData[k, Infinity, {c^2/k0^3, (-4*(2*c^3 - I*c^2*k0))/k0^3, (5*(25*c^4 - (24*I)*c^3*k0 - 6*c^2*k0^2))/(4*k0^3), (-4*(18*c^5 - (25*I)*c^4*k0 - 12*c^3*k0^2 + (2*I)*c^2*k0^3))/k0^3, (7*(301*c^6 - (540*I)*c^5*k0 - 375*c^4*k0^2 + (120*I)*c^3*k0^3 + 15*c^2*k0^4))/(24*k0^3), 0, ((-45*(c - I*k0)^8)/32 + (45*(2*c - I*k0)^8)/16 - (45*(3*c - I*k0)^8)/32)/(60*k0^3), 0, ((33*(c - I*k0)^10)/64 - (33*(2*c - I*k0)^10)/32 + (33*(3*c - I*k0)^10)/64)/(60*k0^3)}, 1, 11, 1]

View File

@ -1,2 +0,0 @@
(6*k^4*(5 - 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 4*k^2*(15 - 11*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 - 32*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6 + 12*k^4*(-5 + 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 8*k^2*(-15 + 11*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 + 64*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6 + 6*k^4*(5 - 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 4*k^2*(15 - 11*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 - 32*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6)/(60*k^5*k0^3)
SeriesData[k, Infinity, {c^2/k0^3, (-5*(2*c^3 - I*c^2*k0))/k0^3, (2*(25*c^4 - (24*I)*c^3*k0 - 6*c^2*k0^2))/k0^3, (-35*(18*c^5 - (25*I)*c^4*k0 - 12*c^3*k0^2 + (2*I)*c^2*k0^3))/(4*k0^3), (32*(c - I*k0)^6 - 64*(2*c - I*k0)^6 + 32*(3*c - I*k0)^6)/(60*k0^3), ((-45*(c - I*k0)^7)/4 + (45*(2*c - I*k0)^7)/2 - (45*(3*c - I*k0)^7)/4)/(60*k0^3), 0, ((55*(c - I*k0)^9)/32 - (55*(2*c - I*k0)^9)/16 + (55*(3*c - I*k0)^9)/32)/(60*k0^3), 0, ((-39*(c - I*k0)^11)/64 + (39*(2*c - I*k0)^11)/32 - (39*(3*c - I*k0)^11)/64)/(60*k0^3)}, 1, 11, 1]

View File

@ -1,2 +0,0 @@
(-2*(k^6*(-35 + 6*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 6*k^4*(-35 + 17*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 16*k^2*(-21 + 16*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5 + 160*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^7) + k^6*(-35 + 6*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 6*k^4*(-35 + 17*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 16*k^2*(-21 + 16*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5 + 160*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^7 + k^6*(-35 + 6*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 6*k^4*(-35 + 17*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 16*k^2*(-21 + 16*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5 + 160*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^7)/(210*k^6*k0^3)
SeriesData[k, Infinity, {c^2/k0^3, (-6*(2*c^3 - I*c^2*k0))/k0^3, (35*(25*c^4 - (24*I)*c^3*k0 - 6*c^2*k0^2))/(12*k0^3), (-16*(18*c^5 - (25*I)*c^4*k0 - 12*c^3*k0^2 + (2*I)*c^2*k0^3))/k0^3, (21*(301*c^6 - (540*I)*c^5*k0 - 375*c^4*k0^2 + (120*I)*c^3*k0^3 + 15*c^2*k0^4))/(8*k0^3), (-160*(c - I*k0)^7 + 320*(2*c - I*k0)^7 - 160*(3*c - I*k0)^7)/(210*k0^3), ((3465*(c - I*k0)^8)/64 - (3465*(2*c - I*k0)^8)/32 + (3465*(3*c - I*k0)^8)/64)/(210*k0^3), 0, ((-1001*(c - I*k0)^10)/128 + (1001*(2*c - I*k0)^10)/64 - (1001*(3*c - I*k0)^10)/128)/(210*k0^3)}, 1, 11, 1]

View File

@ -1,2 +0,0 @@
((7*k^8 + 24*k^6*(7 - 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 16*k^4*(42 - 23*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 + 64*k^2*(14 - 11*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6 - 384*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^8)/(336*k^7) - (7*k^8 + 24*k^6*(7 - 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 16*k^4*(42 - 23*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 + 64*k^2*(14 - 11*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6 - 384*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^8)/(168*k^7) + (7*k^8 + 24*k^6*(7 - 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 16*k^4*(42 - 23*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 + 64*k^2*(14 - 11*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6 - 384*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^8)/(336*k^7))/k0^3
SeriesData[k, Infinity, {c^2/k0^3, (-7*(2*c^3 - I*c^2*k0))/k0^3, (4*(25*c^4 - (24*I)*c^3*k0 - 6*c^2*k0^2))/k0^3, (-105*(18*c^5 - (25*I)*c^4*k0 - 12*c^3*k0^2 + (2*I)*c^2*k0^3))/(4*k0^3), (16*(301*c^6 - (540*I)*c^5*k0 - 375*c^4*k0^2 + (120*I)*c^3*k0^3 + 15*c^2*k0^4))/(3*k0^3), ((-33*(c - I*k0)^7)/16 + (33*(2*c - I*k0)^7)/8 - (33*(3*c - I*k0)^7)/16)/k0^3, ((8*(c - I*k0)^8)/7 - (16*(2*c - I*k0)^8)/7 + (8*(3*c - I*k0)^8)/7)/k0^3, ((-143*(c - I*k0)^9)/384 + (143*(2*c - I*k0)^9)/192 - (143*(3*c - I*k0)^9)/384)/k0^3, 0, ((13*(c - I*k0)^11)/256 - (13*(2*c - I*k0)^11)/128 + (13*(3*c - I*k0)^11)/256)/k0^3}, 1, 11, 1]

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -1 +0,0 @@
9a2ec0ef6771d8a7db72ddc960cbd1172c4c24e2

View File

View File

@ -1,2 +0,0 @@
(-6*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 6*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) - 2*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + k*Sqrt[Pi]*(Piecewise[{{0, k^2/k0^2 <= 1}}, (2*Sqrt[k^2 - k0^2])/(k*Sqrt[Pi])] + I*Piecewise[{{(2*k0)/(k*Sqrt[Pi]), k0^2/k^2 < 1}, {(2*(k0 - Sqrt[-k^2 + k0^2]))/(k*Sqrt[Pi]), k0^2/k^2 > 1}}, 0]))/(2*k*k0^2)
Piecewise[{{SeriesData[k, Infinity, {(9*c^4)/(2*k0^2) - ((3*I)*c^3)/k0, 0, (-15*(9*c^6 - (15*I)*c^5*k0 - 9*c^4*k0^2 + (2*I)*c^3*k0^3))/(4*k0^2), 0, (105*(69*c^8 - (172*I)*c^7*k0 - 180*c^6*k0^2 + (100*I)*c^5*k0^3 + 30*c^4*k0^4 - (4*I)*c^3*k0^5))/(32*k0^2), 0, (-105*(933*c^10 - (3025*I)*c^9*k0 - 4347*c^8*k0^2 + (3612*I)*c^7*k0^3 + 1890*c^6*k0^4 - (630*I)*c^5*k0^5 - 126*c^4*k0^6 + (12*I)*c^3*k0^7))/(64*k0^2)}, 4, 11, 1], (k0 <= 0 && k^2/k0^2 > 1) || k0 > 0}}, SeriesData[k, Infinity, {-k0^(-2), 0, 1/2, 0, ((3*c*(c - I*k0)^3)/8 - (3*c*(2*c - I*k0)^3)/4 + (3*c*(3*c - I*k0)^3)/8 - (3*I)/8*(c - I*k0)^3*k0 + (3*I)/8*(2*c - I*k0)^3*k0 - I/8*(3*c - I*k0)^3*k0)/k0^2, 0, ((-3*c*(c - I*k0)^5)/16 + (3*c*(2*c - I*k0)^5)/8 - (3*c*(3*c - I*k0)^5)/16 + (3*I)/16*(c - I*k0)^5*k0 - (3*I)/16*(2*c - I*k0)^5*k0 + I/16*(3*c - I*k0)^5*k0)/k0^2, 0, ((15*c*(c - I*k0)^7)/128 - (15*c*(2*c - I*k0)^7)/64 + (15*c*(3*c - I*k0)^7)/128 - (15*I)/128*(c - I*k0)^7*k0 + (15*I)/128*(2*c - I*k0)^7*k0 - (5*I)/128*(3*c - I*k0)^7*k0)/k0^2, 0, ((-21*c*(c - I*k0)^9)/256 + (21*c*(2*c - I*k0)^9)/128 - (21*c*(3*c - I*k0)^9)/256 + (21*I)/256*(c - I*k0)^9*k0 - (21*I)/256*(2*c - I*k0)^9*k0 + (7*I)/256*(3*c - I*k0)^9*k0)/k0^2}, 0, 11, 1]]

View File

@ -1,2 +0,0 @@
(-1 + (6*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2)/k^2 - (6*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2)/k^2 + (2*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2)/k^2 + Sqrt[Pi]*(I*Piecewise[{{0, k^2/k0^2 <= 1}}, (2*k0*Sqrt[k^2 - k0^2])/(k^2*Sqrt[Pi])] + Piecewise[{{(k^2 + 2*k0*(-k0 + Sqrt[-k^2 + k0^2]))/(k^2*Sqrt[Pi]), k^2/k0^2 < 1}, {(1 - (2*k0^2)/k^2)/Sqrt[Pi], k^2/k0^2 > 1}}, 0]))/(2*k0^2)
SeriesData[k, Infinity, {(3*c^3)/k0^2, 0, (-15*(5*c^5 - (6*I)*c^4*k0 - 2*c^3*k0^2))/(4*k0^2), 0, (21*(43*c^7 - (90*I)*c^6*k0 - 75*c^5*k0^2 + (30*I)*c^4*k0^3 + 5*c^3*k0^4))/(8*k0^2), 0, (-15*(3025*c^9 - (8694*I)*c^8*k0 - 10836*c^7*k0^2 + (7560*I)*c^6*k0^3 + 3150*c^5*k0^4 - (756*I)*c^4*k0^5 - 84*c^3*k0^6))/(64*k0^2)}, 3, 11, 1]

View File

View File

@ -1,9 +0,0 @@
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^3*BesselJ[1, k*x])/(k0^3*x^2), {x, 0, Infinity}, Assumptions -> n == 1 && q == 3 && κ == 3]
-3 c x + I k0 x c x 3 2 2 4 4 6 6 8 8 Pi 2 2 4 4 6 6 8 8 Pi
-(E (-1 + E ) (8 k x (-14783093325 + 1452971520 k x - 309657600 k x + 251658240 k x + 2147483648 k x ) Cos[-- + k x] - 3 (156043762875 - 11416204800 k x + 1589575680 k x - 587202560 k x + 2147483648 k x ) Sin[-- + k x]))
4 4
Integrate::idiv: Integral of ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ does not converge on {0, Infinity}.
19/2 3 23/2
8589934592 k k0 Sqrt[2 Pi] x
Series[Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^3*BesselJ[1, k*x])/(k0^3*x^2), {x, 0, Infinity}, Assumptions -> n == 1 && q == 3 && κ == 3], {k, Infinity, 10}]

View File

@ -1,2 +0,0 @@
(6*(3 - 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) - (12*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3)/k^2 + 6*(-3 + 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + (12*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3)/k^2 + 2*(3 - 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) - (4*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3)/k^2 + 3*k0*Sqrt[Pi]*(Piecewise[{{0, k^2/k0^2 <= 1}}, (4*(k^2 - k0^2)^(3/2))/(3*k^2*k0*Sqrt[Pi])] + I*Piecewise[{{(-2*(2*k0*(k0 - Sqrt[-k^2 + k0^2]) + k^2*(-3 + (2*Sqrt[-k^2 + k0^2])/k0)))/(3*k^2*Sqrt[Pi]), k^2/k0^2 < 1}, {(2*(1 - (2*k0^2)/(3*k^2)))/Sqrt[Pi], k^2/k0^2 > 1}}, 0]))/(12*k0^3)
SeriesData[k, Infinity, {(2*c^3)/k0^3, (-9*c^4)/(2*k0^3) + ((3*I)*c^3)/k0^2, 0, (5*(9*c^6 - (15*I)*c^5*k0 - 9*c^4*k0^2 + (2*I)*c^3*k0^3))/(4*k0^3), 0, (-21*(69*c^8 - (172*I)*c^7*k0 - 180*c^6*k0^2 + (100*I)*c^5*k0^3 + 30*c^4*k0^4 - (4*I)*c^3*k0^5))/(32*k0^3), 0, (15*(933*c^10 - (3025*I)*c^9*k0 - 4347*c^8*k0^2 + (3612*I)*c^7*k0^3 + 1890*c^6*k0^4 - (630*I)*c^5*k0^5 - 126*c^4*k0^6 + (12*I)*c^3*k0^7))/(64*k0^3)}, 2, 11, 1]

View File

@ -1,2 +0,0 @@
(k^2*(3 - 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 - 2*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 + 3*k^2*(-3 + 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 6*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 + 3*k^2*(3 - 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 - 6*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 + k^2*(-3 + 2*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 2*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4)/(6*k^3*k0^3)
SeriesData[k, Infinity, {(3*c^3)/k0^3, (-20*c^4)/k0^3 + ((8*I)*c^3)/k0^2, (15*(13*c^5 - (10*I)*c^4*k0 - 2*c^3*k0^2))/(4*k0^3), 0, (-7*(243*c^7 - (350*I)*c^6*k0 - 195*c^5*k0^2 + (50*I)*c^4*k0^3 + 5*c^3*k0^4))/(8*k0^3), 0, (3*(34105*c^9 - (69930*I)*c^8*k0 - 61236*c^7*k0^2 + (29400*I)*c^6*k0^3 + 8190*c^5*k0^4 - (1260*I)*c^4*k0^5 - 84*c^3*k0^6))/(64*k0^3), 0, (-33*(55591*c^11 - (145750*I)*c^10*k0 - 170525*c^9*k0^2 + (116550*I)*c^8*k0^3 + 51030*c^7*k0^4 - (14700*I)*c^6*k0^5 - 2730*c^5*k0^6 + (300*I)*c^4*k0^7 + 15*c^3*k0^8))/(128*k0^3)}, 2, 11, 1]

View File

@ -1,2 +0,0 @@
(-3*(k^4*(-15 + 4*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5) + 3*(k^4*(-15 + 4*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5) + k^4*(-15 + 4*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5 - k^4*(-15 + 4*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) - 4*k^2*(-10 + 7*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 - 24*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^5)/(60*k^4*k0^3)
SeriesData[k, Infinity, {(4*c^3)/k0^3, (-75*c^4)/(2*k0^3) + ((15*I)*c^3)/k0^2, (156*c^5)/k0^3 - ((120*I)*c^4)/k0^2 - (24*c^3)/k0, (-35*(35*c^6 - (39*I)*c^5*k0 - 15*c^4*k0^2 + (2*I)*c^3*k0^3))/(4*k0^3), 0, (63*(555*c^8 - (972*I)*c^7*k0 - 700*c^6*k0^2 + (260*I)*c^5*k0^3 + 50*c^4*k0^4 - (4*I)*c^3*k0^5))/(32*k0^3), 0, (-33*(14575*c^10 - (34105*I)*c^9*k0 - 34965*c^8*k0^2 + (20412*I)*c^7*k0^3 + 7350*c^6*k0^4 - (1638*I)*c^5*k0^5 - 210*c^4*k0^6 + (12*I)*c^3*k0^7))/(64*k0^3)}, 2, 11, 1]

View File

@ -1,2 +0,0 @@
(3*k^4*(5 - 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 2*k^2*(15 - 11*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 - 16*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6 + 9*k^4*(-5 + 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 6*k^2*(-15 + 11*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 + 48*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6 + 9*k^4*(5 - 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 6*k^2*(15 - 11*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 - 48*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6 + 3*k^4*(-5 + 2*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 2*k^2*(-15 + 11*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 + 16*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^6)/(30*k^5*k0^3)
SeriesData[k, Infinity, {(5*c^3)/k0^3, (-12*(5*c^4 - (2*I)*c^3*k0))/k0^3, (105*(13*c^5 - (10*I)*c^4*k0 - 2*c^3*k0^2))/(4*k0^3), (-32*(35*c^6 - (39*I)*c^5*k0 - 15*c^4*k0^2 + (2*I)*c^3*k0^3))/k0^3, (63*(243*c^7 - (350*I)*c^6*k0 - 195*c^5*k0^2 + (50*I)*c^4*k0^3 + 5*c^3*k0^4))/(8*k0^3), 0, (-11*(34105*c^9 - (69930*I)*c^8*k0 - 61236*c^7*k0^2 + (29400*I)*c^6*k0^3 + 8190*c^5*k0^4 - (1260*I)*c^4*k0^5 - 84*c^3*k0^6))/(64*k0^3), 0, ((-39*(c - I*k0)^11)/128 + (117*(2*c - I*k0)^11)/128 - (117*(3*c - I*k0)^11)/128 + (39*(4*c - I*k0)^11)/128)/(30*k0^3)}, 2, 11, 1]

View File

@ -1,2 +0,0 @@
(-3*(k^6*(-35 + 6*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 6*k^4*(-35 + 17*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 16*k^2*(-21 + 16*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5 + 160*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^7) + 3*(k^6*(-35 + 6*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 6*k^4*(-35 + 17*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 16*k^2*(-21 + 16*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5 + 160*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^7) + k^6*(-35 + 6*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 6*k^4*(-35 + 17*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 16*k^2*(-21 + 16*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5 + 160*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^7 - k^6*(-35 + 6*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) - 6*k^4*(-35 + 17*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 - 16*k^2*(-21 + 16*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^5 - 160*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^7)/(210*k^6*k0^3)
SeriesData[k, Infinity, {(6*c^3)/k0^3, (-35*(5*c^4 - (2*I)*c^3*k0))/(2*k0^3), (48*(13*c^5 - (10*I)*c^4*k0 - 2*c^3*k0^2))/k0^3, (-315*(35*c^6 - (39*I)*c^5*k0 - 15*c^4*k0^2 + (2*I)*c^3*k0^3))/(4*k0^3), (32*(243*c^7 - (350*I)*c^6*k0 - 195*c^5*k0^2 + (50*I)*c^4*k0^3 + 5*c^3*k0^4))/k0^3, (-693*(555*c^8 - (972*I)*c^7*k0 - 700*c^6*k0^2 + (260*I)*c^5*k0^3 + 50*c^4*k0^4 - (4*I)*c^3*k0^5))/(32*k0^3), 0, ((-1001*(c - I*k0)^10)/128 + (3003*(2*c - I*k0)^10)/128 - (3003*(3*c - I*k0)^10)/128 + (1001*(4*c - I*k0)^10)/128)/(210*k0^3)}, 2, 11, 1]

View File

@ -1,2 +0,0 @@
((7*k^8 + 24*k^6*(7 - 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 16*k^4*(42 - 23*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 + 64*k^2*(14 - 11*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6 - 384*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^8)/(336*k^7) - (7*k^8 + 24*k^6*(7 - 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 16*k^4*(42 - 23*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 + 64*k^2*(14 - 11*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6 - 384*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^8)/(112*k^7) + (7*k^8 + 24*k^6*(7 - 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 16*k^4*(42 - 23*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 + 64*k^2*(14 - 11*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6 - 384*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^8)/(112*k^7) - (7*k^8 + 24*k^6*(7 - 2*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 16*k^4*(42 - 23*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 + 64*k^2*(14 - 11*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^6 - 384*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^8)/(336*k^7))/k0^3
SeriesData[k, Infinity, {(7*c^3)/k0^3, (-24*(5*c^4 - (2*I)*c^3*k0))/k0^3, (315*(13*c^5 - (10*I)*c^4*k0 - 2*c^3*k0^2))/(4*k0^3), (-160*(35*c^6 - (39*I)*c^5*k0 - 15*c^4*k0^2 + (2*I)*c^3*k0^3))/k0^3, (693*(243*c^7 - (350*I)*c^6*k0 - 195*c^5*k0^2 + (50*I)*c^4*k0^3 + 5*c^3*k0^4))/(8*k0^3), (-96*(555*c^8 - (972*I)*c^7*k0 - 700*c^6*k0^2 + (260*I)*c^5*k0^3 + 50*c^4*k0^4 - (4*I)*c^3*k0^5))/k0^3, ((-143*(c - I*k0)^9)/384 + (143*(2*c - I*k0)^9)/128 - (143*(3*c - I*k0)^9)/128 + (143*(4*c - I*k0)^9)/384)/k0^3, 0, ((13*(c - I*k0)^11)/256 - (39*(2*c - I*k0)^11)/256 + (39*(3*c - I*k0)^11)/256 - (13*(4*c - I*k0)^11)/256)/k0^3}, 2, 11, 1]

View File

@ -1 +0,0 @@
bee84490a2f9b473adccfa023c6611be883a01a7

View File

@ -1 +0,0 @@
a9ad81536da843935e33ae577308937e51c35ca7

View File

@ -1 +0,0 @@
8640f89aa7c80f216e563672dd2763f2c7becbce

View File

@ -1,2 +0,0 @@
((k^2*(-3 + Sqrt[1 + k^2/(c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2)/(k^3*Sqrt[1 + k^2/(c - I*k0)^2]) - (4*(k^2*(-3 + Sqrt[1 + k^2/(2*c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2))/(k^3*Sqrt[1 + k^2/(2*c - I*k0)^2]) + (6*(k^2*(-3 + Sqrt[1 + k^2/(3*c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2))/(k^3*Sqrt[1 + k^2/(3*c - I*k0)^2]) - (4*(k^2*(-3 + Sqrt[1 + k^2/(4*c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2))/(k^3*Sqrt[1 + k^2/(4*c - I*k0)^2]) + (k^2*(-3 + Sqrt[1 + k^2/(5*c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2)/(k^3*Sqrt[1 + k^2/(5*c - I*k0)^2]))/k0
SeriesData[k, Infinity, {((-105*I)*c^4)/k + (315*c^5)/(k*k0), 0, (-945*(30*c^7 - (28*I)*c^6*k0 - 9*c^5*k0^2 + I*c^4*k0^3))/(2*k*k0), 0, (3465*(2025*c^9 - (2979*I)*c^8*k0 - 1800*c^7*k0^2 + (560*I)*c^6*k0^3 + 90*c^5*k0^4 - (6*I)*c^4*k0^5))/(16*k*k0)}, 5, 11, 1]

View File

@ -1,2 +0,0 @@
((k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4)/(k^4*Sqrt[1 + k^2/(c - I*k0)^2]*(c - I*k0)) - (4*(k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4))/(k^4*Sqrt[1 + k^2/(2*c - I*k0)^2]*(2*c - I*k0)) + (6*(k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4))/(k^4*Sqrt[1 + k^2/(3*c - I*k0)^2]*(3*c - I*k0)) - (4*(k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4))/(k^4*Sqrt[1 + k^2/(4*c - I*k0)^2]*(4*c - I*k0)) + (k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4)/(k^4*Sqrt[1 + k^2/(5*c - I*k0)^2]*(5*c - I*k0)))/k0
SeriesData[k, Infinity, {(105*c^4)/(k*k0), 0, (-315*(28*c^6 - (18*I)*c^5*k0 - 3*c^4*k0^2))/(2*k*k0), 0, (2079*(993*c^8 - (1200*I)*c^7*k0 - 560*c^6*k0^2 + (120*I)*c^5*k0^3 + 10*c^4*k0^4))/(16*k*k0), 0, (-2145*(49346*c^10 - (85050*I)*c^9*k0 - 62559*c^8*k0^2 + (25200*I)*c^7*k0^3 + 5880*c^6*k0^4 - (756*I)*c^5*k0^5 - 42*c^4*k0^6))/(32*k*k0)}, 4, 11, 1]

View File

@ -1,2 +0,0 @@
((k^4*(-5 + Sqrt[1 + k^2/(c - I*k0)^2]) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 16*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4)/(k^5*Sqrt[1 + k^2/(c - I*k0)^2]) - (4*(k^4*(-5 + Sqrt[1 + k^2/(2*c - I*k0)^2]) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 16*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4))/(k^5*Sqrt[1 + k^2/(2*c - I*k0)^2]) + (6*(k^4*(-5 + Sqrt[1 + k^2/(3*c - I*k0)^2]) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 16*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4))/(k^5*Sqrt[1 + k^2/(3*c - I*k0)^2]) - (4*(k^4*(-5 + Sqrt[1 + k^2/(4*c - I*k0)^2]) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 16*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4))/(k^5*Sqrt[1 + k^2/(4*c - I*k0)^2]) + (k^4*(-5 + Sqrt[1 + k^2/(5*c - I*k0)^2]) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 16*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4)/(k^5*Sqrt[1 + k^2/(5*c - I*k0)^2]))/k0
SeriesData[k, Infinity, {(384*c^4)/(k*k0), ((945*I)*c^4)/k - (2835*c^5)/(k*k0), 0, (3465*(30*c^7 - (28*I)*c^6*k0 - 9*c^5*k0^2 + I*c^4*k0^3))/(2*k*k0), 0, (-9009*(2025*c^9 - (2979*I)*c^8*k0 - 1800*c^7*k0^2 + (560*I)*c^6*k0^3 + 90*c^5*k0^4 - (6*I)*c^4*k0^5))/(16*k*k0)}, 4, 11, 1]

View File

@ -1,2 +0,0 @@
((k^6 - 6*k^4*(-3 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 16*k^2*(3 - 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 - 32*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6)/(k^6*Sqrt[1 + k^2/(c - I*k0)^2]*(c - I*k0)) - (4*(k^6 - 6*k^4*(-3 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 16*k^2*(3 - 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 - 32*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6))/(k^6*Sqrt[1 + k^2/(2*c - I*k0)^2]*(2*c - I*k0)) + (6*(k^6 - 6*k^4*(-3 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 16*k^2*(3 - 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 - 32*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6))/(k^6*Sqrt[1 + k^2/(3*c - I*k0)^2]*(3*c - I*k0)) - (4*(k^6 - 6*k^4*(-3 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 16*k^2*(3 - 2*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 - 32*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^6))/(k^6*Sqrt[1 + k^2/(4*c - I*k0)^2]*(4*c - I*k0)) + (k^6 - 6*k^4*(-3 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 16*k^2*(3 - 2*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4 - 32*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^6)/(k^6*Sqrt[1 + k^2/(5*c - I*k0)^2]*(5*c - I*k0)))/k0
SeriesData[k, Infinity, {(945*c^4)/(k*k0), ((3840*I)*c^4)/k - (11520*c^5)/(k*k0), (3465*(28*c^6 - (18*I)*c^5*k0 - 3*c^4*k0^2))/(2*k*k0), 0, (-9009*(993*c^8 - (1200*I)*c^7*k0 - 560*c^6*k0^2 + (120*I)*c^5*k0^3 + 10*c^4*k0^4))/(16*k*k0), 0, (6435*(49346*c^10 - (85050*I)*c^9*k0 - 62559*c^8*k0^2 + (25200*I)*c^7*k0^3 + 5880*c^6*k0^4 - (756*I)*c^5*k0^5 - 42*c^4*k0^6))/(32*k*k0)}, 4, 11, 1]

View File

@ -1,2 +0,0 @@
((k^6*(-7 + Sqrt[1 + k^2/(c - I*k0)^2]) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 + 64*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6)/(k^7*Sqrt[1 + k^2/(c - I*k0)^2]) - (4*(k^6*(-7 + Sqrt[1 + k^2/(2*c - I*k0)^2]) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 + 64*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6))/(k^7*Sqrt[1 + k^2/(2*c - I*k0)^2]) + (6*(k^6*(-7 + Sqrt[1 + k^2/(3*c - I*k0)^2]) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 + 64*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6))/(k^7*Sqrt[1 + k^2/(3*c - I*k0)^2]) - (4*(k^6*(-7 + Sqrt[1 + k^2/(4*c - I*k0)^2]) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 + 64*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^6))/(k^7*Sqrt[1 + k^2/(4*c - I*k0)^2]) + (k^6*(-7 + Sqrt[1 + k^2/(5*c - I*k0)^2]) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4 + 64*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^6)/(k^7*Sqrt[1 + k^2/(5*c - I*k0)^2]))/k0
SeriesData[k, Infinity, {(1920*c^4)/(k*k0), ((10395*I)*c^4)/k - (31185*c^5)/(k*k0), (7680*(28*c^6 - (18*I)*c^5*k0 - 3*c^4*k0^2))/(k*k0), (-45045*(30*c^7 - (28*I)*c^6*k0 - 9*c^5*k0^2 + I*c^4*k0^3))/(2*k*k0), 0, (45045*(2025*c^9 - (2979*I)*c^8*k0 - 1800*c^7*k0^2 + (560*I)*c^6*k0^3 + 90*c^5*k0^4 - (6*I)*c^4*k0^5))/(16*k*k0)}, 4, 11, 1]

View File

@ -1 +0,0 @@
Integrate[(E^(I*k0*x)*(-1 + E^(-(c*x)))^4*BesselJ[0, k*x])/(k0^2*x), {x, 0, Infinity}, Assumptions -> n == 0 && q == 2 && κ == 4]

View File

@ -1,2 +0,0 @@
((-4*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0))/k + (6*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0))/k - (4*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0))/k + ((-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0))/k + (Sqrt[Pi]*(Piecewise[{{0, k^2/k0^2 <= 1}}, (2*Sqrt[k^2 - k0^2])/(k*Sqrt[Pi])] + I*Piecewise[{{(2*k0)/(k*Sqrt[Pi]), k0^2/k^2 < 1}, {(2*(k0 - Sqrt[-k^2 + k0^2]))/(k*Sqrt[Pi]), k0^2/k^2 > 1}}, 0]))/2)/k0^2
Piecewise[{{SeriesData[k, Infinity, {(-3*c^4)/k0^2, 0, (-45*c^4)/2 + (195*c^6)/(2*k0^2) - ((90*I)*c^5)/k0, 0, (6825*c^6)/4 - (25515*c^8)/(16*k0^2) + ((2625*I)*c^7)/k0 - (525*I)*c^5*k0 - (525*c^4*k0^2)/8, 0, (105*(6821*c^10 - (15540*I)*c^9*k0 - 15309*c^8*k0^2 + (8400*I)*c^7*k0^3 + 2730*c^6*k0^4 - (504*I)*c^5*k0^5 - 42*c^4*k0^6))/(32*k0^2)}, 4, 11, 1], (k0 <= 0 && k^2/k0^2 > 1) || k0 > 0}}, SeriesData[k, Infinity, {-k0^(-2), 0, 1/2, 0, ((c*(c - I*k0)^3)/2 - (3*c*(2*c - I*k0)^3)/2 + (3*c*(3*c - I*k0)^3)/2 - (c*(4*c - I*k0)^3)/2 - I/2*(c - I*k0)^3*k0 + (3*I)/4*(2*c - I*k0)^3*k0 - I/2*(3*c - I*k0)^3*k0 + I/8*(4*c - I*k0)^3*k0)/k0^2, 0, (-(c*(c - I*k0)^5)/4 + (3*c*(2*c - I*k0)^5)/4 - (3*c*(3*c - I*k0)^5)/4 + (c*(4*c - I*k0)^5)/4 + I/4*(c - I*k0)^5*k0 - (3*I)/8*(2*c - I*k0)^5*k0 + I/4*(3*c - I*k0)^5*k0 - I/16*(4*c - I*k0)^5*k0)/k0^2, 0, ((5*c*(c - I*k0)^7)/32 - (15*c*(2*c - I*k0)^7)/32 + (15*c*(3*c - I*k0)^7)/32 - (5*c*(4*c - I*k0)^7)/32 - (5*I)/32*(c - I*k0)^7*k0 + (15*I)/64*(2*c - I*k0)^7*k0 - (5*I)/32*(3*c - I*k0)^7*k0 + (5*I)/128*(4*c - I*k0)^7*k0)/k0^2, 0, ((-7*c*(c - I*k0)^9)/64 + (21*c*(2*c - I*k0)^9)/64 - (21*c*(3*c - I*k0)^9)/64 + (7*c*(4*c - I*k0)^9)/64 + (7*I)/64*(c - I*k0)^9*k0 - (21*I)/128*(2*c - I*k0)^9*k0 + (7*I)/64*(3*c - I*k0)^9*k0 - (7*I)/256*(4*c - I*k0)^9*k0)/k0^2}, 0, 11, 1]]

View File

@ -1,2 +0,0 @@
(-k^2 + 8*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 - 12*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 8*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 - 2*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + k^2*Sqrt[Pi]*(I*Piecewise[{{0, k^2/k0^2 <= 1}}, (2*k0*Sqrt[k^2 - k0^2])/(k^2*Sqrt[Pi])] + Piecewise[{{(k^2 + 2*k0*(-k0 + Sqrt[-k^2 + k0^2]))/(k^2*Sqrt[Pi]), k^2/k0^2 < 1}, {(1 - (2*k0^2)/k^2)/Sqrt[Pi], k^2/k0^2 > 1}}, 0]))/(2*k^2*k0^2)
SeriesData[k, Infinity, {(30*c^5)/k0^2 - ((15*I)*c^4)/k0, 0, 315*c^5 - (525*c^7)/k0^2 + ((1365*I)/2*c^6)/k0 - (105*I)/2*c^4*k0, 0, (315*(370*c^9 - (729*I)*c^8*k0 - 600*c^7*k0^2 + (260*I)*c^6*k0^3 + 60*c^5*k0^4 - (6*I)*c^4*k0^5))/(16*k0^2)}, 5, 11, 1]

View File

@ -1,2 +0,0 @@
(k^2*(-3 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 4*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 - 4*k^2*(-3 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) - 16*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 6*k^2*(-3 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 24*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 - 4*k^2*(-3 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) - 16*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + k^2*(-3 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 4*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3)/(3*k^3*k0^2)
SeriesData[k, Infinity, {(15*c^4)/k0^2, 0, (105*c^4)/2 - (490*c^6)/k0^2 + ((315*I)*c^5)/k0, 0, -6615*c^6 + (187677*c^8)/(16*k0^2) - ((14175*I)*c^7)/k0 + (2835*I)/2*c^5*k0 + (945*c^4*k0^2)/8, 0, (-165*(49346*c^10 - (85050*I)*c^9*k0 - 62559*c^8*k0^2 + (25200*I)*c^7*k0^3 + 5880*c^6*k0^4 - (756*I)*c^5*k0^5 - 42*c^4*k0^6))/(32*k0^2)}, 4, 11, 1]

View File

@ -1,2 +0,0 @@
-((k^2*(-2 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 2*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 + 6*k^2*(-2 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 12*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 + k^2*(-2 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 2*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4)/(k^4*k0^2))
SeriesData[k, Infinity, {(48*c^4)/k0^2, (-315*c^5)/k0^2 + ((105*I)*c^4)/k0, 0, (-2835*c^5)/2 + (4725*c^7)/k0^2 - ((4410*I)*c^6)/k0 + (315*I)/2*c^4*k0, 0, (-693*(2025*c^9 - (2979*I)*c^8*k0 - 1800*c^7*k0^2 + (560*I)*c^6*k0^3 + 90*c^5*k0^4 - (6*I)*c^4*k0^5))/(16*k0^2)}, 4, 11, 1]

View File

@ -1,2 +0,0 @@
(-4*(k^4*(-5 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 16*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5) + 6*(k^4*(-5 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 16*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5) - 4*(k^4*(-5 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 16*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^5) + k^4*(-5 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 16*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5 + k^4*(-5 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 16*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^5)/(5*k^5*k0^2)
SeriesData[k, Infinity, {(105*c^4)/k0^2, (-1152*c^5)/k0^2 + ((384*I)*c^4)/k0, (-945*c^4)/2 + (4410*c^6)/k0^2 - ((2835*I)*c^5)/k0, 0, 24255*c^6 - (688149*c^8)/(16*k0^2) + ((51975*I)*c^7)/k0 - (10395*I)/2*c^5*k0 - (3465*c^4*k0^2)/8, 0, (429*(49346*c^10 - (85050*I)*c^9*k0 - 62559*c^8*k0^2 + (25200*I)*c^7*k0^3 + 5880*c^6*k0^4 - (756*I)*c^5*k0^5 - 42*c^4*k0^6))/(32*k0^2)}, 4, 11, 1]

View File

@ -1,2 +0,0 @@
(-3*k^4*(-3 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 8*k^2*(3 - 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 - 16*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6 + 12*k^4*(-3 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 32*k^2*(-3 + 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 + 64*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6 - 18*k^4*(-3 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 48*k^2*(3 - 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 - 96*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6 + 12*k^4*(-3 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 32*k^2*(-3 + 2*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 + 64*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^6 - 3*k^4*(-3 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 8*k^2*(3 - 2*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4 - 16*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^6)/(3*k^6*k0^2)
SeriesData[k, Infinity, {(192*c^4)/k0^2, (-2835*c^5)/k0^2 + ((945*I)*c^4)/k0, -1920*c^4 + (17920*c^6)/k0^2 - ((11520*I)*c^5)/k0, (31185*c^5)/2 - (51975*c^7)/k0^2 + ((48510*I)*c^6)/k0 - (3465*I)/2*c^4*k0, 0, (3003*(2025*c^9 - (2979*I)*c^8*k0 - 1800*c^7*k0^2 + (560*I)*c^6*k0^3 + 90*c^5*k0^4 - (6*I)*c^4*k0^5))/(16*k0^2)}, 4, 11, 1]

View File

@ -1,2 +0,0 @@
(-4*(k^6*(-7 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^7) + 6*(k^6*(-7 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^7) - 4*(k^6*(-7 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^7) + k^6*(-7 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^7 + k^6*(-7 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^7)/(7*k^7*k0^2)
SeriesData[k, Infinity, {(315*c^4)/k0^2, (-1920*(3*c^5 - I*c^4*k0))/k0^2, (3465*(28*c^6 - (18*I)*c^5*k0 - 3*c^4*k0^2))/(2*k0^2), (-7680*(30*c^7 - (28*I)*c^6*k0 - 9*c^5*k0^2 + I*c^4*k0^3))/k0^2, (9009*(993*c^8 - (1200*I)*c^7*k0 - 560*c^6*k0^2 + (120*I)*c^5*k0^3 + 10*c^4*k0^4))/(16*k0^2), 0, (-2145*(49346*c^10 - (85050*I)*c^9*k0 - 62559*c^8*k0^2 + (25200*I)*c^7*k0^3 + 5880*c^6*k0^4 - (756*I)*c^5*k0^5 - 42*c^4*k0^6))/(32*k0^2)}, 4, 11, 1]

View File

@ -1,2 +0,0 @@
Simplify::time: Time spent on a transformation exceeded 300. seconds, and the transformation was aborted. Increasing the value of TimeConstraint option may improve the result of simplification.

View File

@ -1,2 +0,0 @@
Simplify::time: Time spent on a transformation exceeded 300. seconds, and the transformation was aborted. Increasing the value of TimeConstraint option may improve the result of simplification.

View File

@ -1,2 +0,0 @@
(8*k^2*(3 - 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) - 16*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 12*k^2*(-3 + 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 24*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 8*k^2*(3 - 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) - 16*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 2*k^2*(-3 + 2*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 4*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 3*k^2*k0*Sqrt[Pi]*(Piecewise[{{0, k^2/k0^2 <= 1}}, (4*(k^2 - k0^2)^(3/2))/(3*k^2*k0*Sqrt[Pi])] + I*Piecewise[{{(-2*(2*k0*(k0 - Sqrt[-k^2 + k0^2]) + k^2*(-3 + (2*Sqrt[-k^2 + k0^2])/k0)))/(3*k^2*Sqrt[Pi]), k^2/k0^2 < 1}, {(2*(1 - (2*k0^2)/(3*k^2)))/Sqrt[Pi], k^2/k0^2 > 1}}, 0]))/(12*k^2*k0^3)
SeriesData[k, Infinity, {(3*c^4)/k0^3, 0, (-5*(13*c^6 - (12*I)*c^5*k0 - 3*c^4*k0^2))/(2*k0^3), 0, (105*I)*c^5 + (5103*c^8)/(16*k0^3) - ((525*I)*c^7)/k0^2 - (1365*c^6)/(4*k0) + (105*c^4*k0)/8, 0, (-15*(6821*c^10 - (15540*I)*c^9*k0 - 15309*c^8*k0^2 + (8400*I)*c^7*k0^3 + 2730*c^6*k0^4 - (504*I)*c^5*k0^5 - 42*c^4*k0^6))/(32*k0^3)}, 3, 11, 1]

View File

@ -1,2 +0,0 @@
(k^2*(3 - 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 - 2*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 + 4*k^2*(-3 + 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 8*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 + 6*k^2*(3 - 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 - 12*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 + 4*k^2*(-3 + 2*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 8*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 + k^2*(3 - 2*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 - 2*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4)/(6*k^3*k0^3)
SeriesData[k, Infinity, {(8*c^4)/k0^3, (-45*c^5)/k0^3 + ((15*I)*c^4)/k0^2, 0, (35*I)/2*c^4 + (525*c^7)/k0^3 - ((490*I)*c^6)/k0^2 - (315*c^5)/(2*k0), 0, (-63*(2025*c^9 - (2979*I)*c^8*k0 - 1800*c^7*k0^2 + (560*I)*c^6*k0^3 + 90*c^5*k0^4 - (6*I)*c^4*k0^5))/(16*k0^3), 0, (165*(25080*c^11 - (49346*I)*c^10*k0 - 42525*c^9*k0^2 + (20853*I)*c^8*k0^3 + 6300*c^7*k0^4 - (1176*I)*c^6*k0^5 - 126*c^5*k0^6 + (6*I)*c^4*k0^7))/(32*k0^3)}, 3, 11, 1]

View File

@ -1,2 +0,0 @@
(-4*(k^4*(-15 + 4*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5) + 6*(k^4*(-15 + 4*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5) - 4*(k^4*(-15 + 4*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^5) + k^4*(-15 + 4*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5 + k^4*(-15 + 4*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^5)/(60*k^4*k0^3)
SeriesData[k, Infinity, {(15*c^4)/k0^3, (-48*(3*c^5 - I*c^4*k0))/k0^3, (35*(28*c^6 - (18*I)*c^5*k0 - 3*c^4*k0^2))/(2*k0^3), 0, (-63*(993*c^8 - (1200*I)*c^7*k0 - 560*c^6*k0^2 + (120*I)*c^5*k0^3 + 10*c^4*k0^4))/(16*k0^3), 0, (33*(49346*c^10 - (85050*I)*c^9*k0 - 62559*c^8*k0^2 + (25200*I)*c^7*k0^3 + 5880*c^6*k0^4 - (756*I)*c^5*k0^5 - 42*c^4*k0^6))/(32*k0^3)}, 3, 11, 1]

View File

@ -1,2 +0,0 @@
((5*k^6 + 12*k^4*(5 - 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 8*k^2*(15 - 11*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 - 64*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6)/(120*k^5) - (5*k^6 + 12*k^4*(5 - 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 8*k^2*(15 - 11*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 - 64*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6)/(30*k^5) + (5*k^6 + 12*k^4*(5 - 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 8*k^2*(15 - 11*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 - 64*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6)/(20*k^5) - (5*k^6 + 12*k^4*(5 - 2*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 8*k^2*(15 - 11*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 - 64*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^6)/(30*k^5) + (5*k^6 + 12*k^4*(5 - 2*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 8*k^2*(15 - 11*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4 - 64*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^6)/(120*k^5))/k0^3
SeriesData[k, Infinity, {(24*c^4)/k0^3, (-315*c^5)/k0^3 + ((105*I)*c^4)/k0^2, (1792*c^6)/k0^3 - ((1152*I)*c^5)/k0^2 - (192*c^4)/k0, (-315*I)/2*c^4 - (4725*c^7)/k0^3 + ((4410*I)*c^6)/k0^2 + (2835*c^5)/(2*k0), 0, (231*(2025*c^9 - (2979*I)*c^8*k0 - 1800*c^7*k0^2 + (560*I)*c^6*k0^3 + 90*c^5*k0^4 - (6*I)*c^4*k0^5))/(16*k0^3), 0, (-429*(25080*c^11 - (49346*I)*c^10*k0 - 42525*c^9*k0^2 + (20853*I)*c^8*k0^3 + 6300*c^7*k0^4 - (1176*I)*c^6*k0^5 - 126*c^5*k0^6 + (6*I)*c^4*k0^7))/(32*k0^3)}, 3, 11, 1]

View File

@ -1,2 +0,0 @@
((k^6*(-35 + 6*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 6*k^4*(-35 + 17*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 16*k^2*(-21 + 16*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5 + 160*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^7)/(210*k^6) - (2*(k^6*(-35 + 6*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 6*k^4*(-35 + 17*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 16*k^2*(-21 + 16*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5 + 160*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^7))/(105*k^6) + (k^6*(-35 + 6*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 6*k^4*(-35 + 17*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 16*k^2*(-21 + 16*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5 + 160*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^7)/(35*k^6) - (2*(k^6*(-35 + 6*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 6*k^4*(-35 + 17*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 16*k^2*(-21 + 16*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^5 + 160*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^7))/(105*k^6) + (k^6*(-35 + 6*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 6*k^4*(-35 + 17*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 16*k^2*(-21 + 16*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^5 + 160*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^7)/(210*k^6))/k0^3
SeriesData[k, Infinity, {(35*c^4)/k0^3, (-576*c^5)/k0^3 + ((192*I)*c^4)/k0^2, (4410*c^6)/k0^3 - ((2835*I)*c^5)/k0^2 - (945*c^4)/(2*k0), (-640*I)*c^4 - (19200*c^7)/k0^3 + ((17920*I)*c^6)/k0^2 + (5760*c^5)/k0, (10395*I)/2*c^5 + (688149*c^8)/(16*k0^3) - ((51975*I)*c^7)/k0^2 - (24255*c^6)/k0 + (3465*c^4*k0)/8, 0, (-143*(49346*c^10 - (85050*I)*c^9*k0 - 62559*c^8*k0^2 + (25200*I)*c^7*k0^3 + 5880*c^6*k0^4 - (756*I)*c^5*k0^5 - 42*c^4*k0^6))/(32*k0^3)}, 3, 11, 1]

View File

@ -1,2 +0,0 @@
((7*k^8 + 24*k^6*(7 - 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 16*k^4*(42 - 23*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 + 64*k^2*(14 - 11*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6 - 384*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^8)/(336*k^7) - (7*k^8 + 24*k^6*(7 - 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 16*k^4*(42 - 23*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 + 64*k^2*(14 - 11*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6 - 384*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^8)/(84*k^7) + (7*k^8 + 24*k^6*(7 - 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 16*k^4*(42 - 23*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 + 64*k^2*(14 - 11*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6 - 384*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^8)/(56*k^7) - (7*k^8 + 24*k^6*(7 - 2*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 16*k^4*(42 - 23*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 + 64*k^2*(14 - 11*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^6 - 384*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^8)/(84*k^7) + (7*k^8 + 24*k^6*(7 - 2*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 16*k^4*(42 - 23*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4 + 64*k^2*(14 - 11*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^6 - 384*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^8)/(336*k^7))/k0^3
SeriesData[k, Infinity, {(48*c^4)/k0^3, (-945*c^5)/k0^3 + ((315*I)*c^4)/k0^2, (8960*c^6)/k0^3 - ((5760*I)*c^5)/k0^2 - (960*c^4)/k0, (-3465*I)/2*c^4 - (51975*c^7)/k0^3 + ((48510*I)*c^6)/k0^2 + (31185*c^5)/(2*k0), (23040*I)*c^5 + (190656*c^8)/k0^3 - ((230400*I)*c^7)/k0^2 - (107520*c^6)/k0 + 1920*c^4*k0, (-3003*(2025*c^9 - (2979*I)*c^8*k0 - 1800*c^7*k0^2 + (560*I)*c^6*k0^3 + 90*c^5*k0^4 - (6*I)*c^4*k0^5))/(16*k0^3), 0, (2145*(25080*c^11 - (49346*I)*c^10*k0 - 42525*c^9*k0^2 + (20853*I)*c^8*k0^3 + 6300*c^7*k0^4 - (1176*I)*c^6*k0^5 - 126*c^5*k0^6 + (6*I)*c^4*k0^7))/(32*k0^3)}, 3, 11, 1]

View File

@ -1,9 +0,0 @@
Integrate[(E^(-(c*x) + I*k0*x)*(1 - E^(-(c*x)))^4*BesselJ[0, k*x])/(k0^4*x^3), {x, 0, Infinity}, Assumptions -> n == 0 && q == 4 && κ == 4 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0]
-5 c x + I k0 x c x 4 2 2 4 4 6 6 8 8 Pi 2 2 4 4 6 6 8 8
E (-1 + E ) ((-418854310875 + 29682132480 k x - 3901685760 k x + 1258291200 k x - 2147483648 k x ) Cos[-- + k x] + 4 Sqrt[2] k x (13043905875 - 1229437440 k x + 240844800 k x - 150994944 k x + 2147483648 k x ) (Cos[k x] + Sin[k x]))
4
Integrate::idiv: Integral of ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ does not converge on {0, Infinity}.
19/2 4 25/2
8589934592 k k0 Sqrt[2 Pi] x
Series[Integrate[(E^(-(c*x) + I*k0*x)*(1 - E^(-(c*x)))^4*BesselJ[0, k*x])/(k0^4*x^3), {x, 0, Infinity}, Assumptions -> n == 0 && q == 4 && κ == 4 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0], {k, Infinity, 10}]

View File

@ -1,9 +0,0 @@
Integrate[(E^(-(c*x) + I*k0*x)*(1 - E^(-(c*x)))^4*BesselJ[1, k*x])/(k0^4*x^3), {x, 0, Infinity}, Assumptions -> n == 1 && q == 4 && κ == 4 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0]
-5 c x + I k0 x c x 4 2 2 4 4 6 6 8 8 Pi 2 2 4 4 6 6 8 8 Pi
-(E (-1 + E ) (8 k x (-14783093325 + 1452971520 k x - 309657600 k x + 251658240 k x + 2147483648 k x ) Cos[-- + k x] - 3 (156043762875 - 11416204800 k x + 1589575680 k x - 587202560 k x + 2147483648 k x ) Sin[-- + k x]))
4 4
Integrate::idiv: Integral of ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ does not converge on {0, Infinity}.
19/2 4 25/2
8589934592 k k0 Sqrt[2 Pi] x
Series[Integrate[(E^(-(c*x) + I*k0*x)*(1 - E^(-(c*x)))^4*BesselJ[1, k*x])/(k0^4*x^3), {x, 0, Infinity}, Assumptions -> n == 1 && q == 4 && κ == 4 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0], {k, Infinity, 10}]

View File

@ -1,9 +0,0 @@
Integrate[(E^(-(c*x) + I*k0*x)*(1 - E^(-(c*x)))^4*BesselJ[2, k*x])/(k0^4*x^3), {x, 0, Infinity}, Assumptions -> n == 2 && q == 4 && κ == 4 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0]
-5 c x + I k0 x c x 4 2 2 4 4 6 6 8 8 Pi 2 2 4 4 6 6 8 8
-(E (-1 + E ) (15 (-43692253605 + 3528645120 k x - 590413824 k x + 352321536 k x + 2147483648 k x ) Cos[-- + k x] + 4 Sqrt[2] k x (21606059475 - 2421619200 k x + 681246720 k x - 1761607680 k x + 2147483648 k x ) (Cos[k x] + Sin[k x])))
4
Integrate::idiv: Integral of --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- does not converge on {0, Infinity}.
19/2 4 25/2
8589934592 k k0 Sqrt[2 Pi] x
Series[Integrate[(E^(-(c*x) + I*k0*x)*(1 - E^(-(c*x)))^4*BesselJ[2, k*x])/(k0^4*x^3), {x, 0, Infinity}, Assumptions -> n == 2 && q == 4 && κ == 4 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0], {k, Infinity, 10}]

View File

@ -1,2 +0,0 @@
(-4*(k^4*(-15 + 8*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 4*k^2*(-5 + 4*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 8*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5) + 6*(k^4*(-15 + 8*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 4*k^2*(-5 + 4*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 8*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5) - 4*(k^4*(-15 + 8*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 4*k^2*(-5 + 4*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 8*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^5) + k^4*(-15 + 8*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 4*k^2*(-5 + 4*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 8*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5 + k^4*(-15 + 8*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 4*k^2*(-5 + 4*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 8*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^5)/(120*k^3*k0^4)
SeriesData[k, Infinity, {(3*c^4)/k0^4, (-8*(3*c^5 - I*c^4*k0))/k0^4, (5*(28*c^6 - (18*I)*c^5*k0 - 3*c^4*k0^2))/(2*k0^4), 0, (-7*(993*c^8 - (1200*I)*c^7*k0 - 560*c^6*k0^2 + (120*I)*c^5*k0^3 + 10*c^4*k0^4))/(16*k0^4), 0, (3*(49346*c^10 - (85050*I)*c^9*k0 - 62559*c^8*k0^2 + (25200*I)*c^7*k0^3 + 5880*c^6*k0^4 - (756*I)*c^5*k0^5 - 42*c^4*k0^6))/(32*k0^4), 0, ((-5*(c - I*k0)^12)/128 + (5*(2*c - I*k0)^12)/32 - (15*(3*c - I*k0)^12)/64 + (5*(4*c - I*k0)^12)/32 - (5*(5*c - I*k0)^12)/128)/(120*k0^4)}, 2, 11, 1]

View File

@ -1,2 +0,0 @@
((5*k^6 + 2*k^4*(15 - 8*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 8*k^2*(5 - 4*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 - 16*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6)/(240*k^4) - (5*k^6 + 2*k^4*(15 - 8*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 8*k^2*(5 - 4*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 - 16*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6)/(60*k^4) + (5*k^6 + 2*k^4*(15 - 8*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 8*k^2*(5 - 4*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 - 16*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6)/(40*k^4) - (5*k^6 + 2*k^4*(15 - 8*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 8*k^2*(5 - 4*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 - 16*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^6)/(60*k^4) + (5*k^6 + 2*k^4*(15 - 8*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 8*k^2*(5 - 4*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4 - 16*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^6)/(240*k^4))/k0^4
SeriesData[k, Infinity, {(4*c^4)/k0^4, (-45*c^5)/k0^4 + ((15*I)*c^4)/k0^3, (224*c^6)/k0^4 - ((144*I)*c^5)/k0^3 - (24*c^4)/k0^2, (-35*(30*c^7 - (28*I)*c^6*k0 - 9*c^5*k0^2 + I*c^4*k0^3))/(2*k0^4), 0, (21*(2025*c^9 - (2979*I)*c^8*k0 - 1800*c^7*k0^2 + (560*I)*c^6*k0^3 + 90*c^5*k0^4 - (6*I)*c^4*k0^5))/(16*k0^4), 0, (-33*(25080*c^11 - (49346*I)*c^10*k0 - 42525*c^9*k0^2 + (20853*I)*c^8*k0^3 + 6300*c^7*k0^4 - (1176*I)*c^6*k0^5 - 126*c^5*k0^6 + (6*I)*c^4*k0^7))/(32*k0^4)}, 2, 11, 1]

View File

@ -1,2 +0,0 @@
((k^6*(-35 + 8*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 20*k^4*(-7 + 4*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 8*k^2*(-21 + 17*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^7)/(840*k^5) - (k^6*(-35 + 8*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 20*k^4*(-7 + 4*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 8*k^2*(-21 + 17*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^7)/(210*k^5) + (k^6*(-35 + 8*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 20*k^4*(-7 + 4*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 8*k^2*(-21 + 17*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^7)/(140*k^5) - (k^6*(-35 + 8*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 20*k^4*(-7 + 4*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 8*k^2*(-21 + 17*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^7)/(210*k^5) + (k^6*(-35 + 8*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 20*k^4*(-7 + 4*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 8*k^2*(-21 + 17*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^7)/(840*k^5))/k0^4
SeriesData[k, Infinity, {(5*c^4)/k0^4, (-72*c^5)/k0^4 + ((24*I)*c^4)/k0^3, (490*c^6)/k0^4 - ((315*I)*c^5)/k0^3 - (105*c^4)/(2*k0^2), (-1920*c^7)/k0^4 + ((1792*I)*c^6)/k0^3 + (576*c^5)/k0^2 - ((64*I)*c^4)/k0, (63*(993*c^8 - (1200*I)*c^7*k0 - 560*c^6*k0^2 + (120*I)*c^5*k0^3 + 10*c^4*k0^4))/(16*k0^4), 0, (-11*(49346*c^10 - (85050*I)*c^9*k0 - 62559*c^8*k0^2 + (25200*I)*c^7*k0^3 + 5880*c^6*k0^4 - (756*I)*c^5*k0^5 - 42*c^4*k0^6))/(32*k0^4), 0, (143*(682591*c^12 - (1504800*I)*c^11*k0 - 1480380*c^10*k0^2 + (850500*I)*c^9*k0^3 + 312795*c^8*k0^4 - (75600*I)*c^7*k0^5 - 11760*c^6*k0^6 + (1080*I)*c^5*k0^7 + 45*c^4*k0^8))/(640*k0^4)}, 2, 11, 1]

View File

@ -1,2 +0,0 @@
((35*k^8 + 16*k^6*(35 - 12*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 16*k^4*(105 - 64*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 + 64*k^2*(28 - 23*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6 - 640*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^8)/(6720*k^6) - (35*k^8 + 16*k^6*(35 - 12*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 16*k^4*(105 - 64*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 + 64*k^2*(28 - 23*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6 - 640*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^8)/(1680*k^6) + (35*k^8 + 16*k^6*(35 - 12*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 16*k^4*(105 - 64*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 + 64*k^2*(28 - 23*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6 - 640*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^8)/(1120*k^6) - (35*k^8 + 16*k^6*(35 - 12*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 16*k^4*(105 - 64*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 + 64*k^2*(28 - 23*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^6 - 640*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^8)/(1680*k^6) + (35*k^8 + 16*k^6*(35 - 12*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 16*k^4*(105 - 64*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4 + 64*k^2*(28 - 23*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^6 - 640*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^8)/(6720*k^6))/k0^4
SeriesData[k, Infinity, {(6*c^4)/k0^4, (-105*c^5)/k0^4 + ((35*I)*c^4)/k0^3, (896*c^6)/k0^4 - ((576*I)*c^5)/k0^3 - (96*c^4)/k0^2, (-315*(30*c^7 - (28*I)*c^6*k0 - 9*c^5*k0^2 + I*c^4*k0^3))/(2*k0^4), 160*c^4 + (15888*c^8)/k0^4 - ((19200*I)*c^7)/k0^3 - (8960*c^6)/k0^2 + ((1920*I)*c^5)/k0, (-231*(2025*c^9 - (2979*I)*c^8*k0 - 1800*c^7*k0^2 + (560*I)*c^6*k0^3 + 90*c^5*k0^4 - (6*I)*c^4*k0^5))/(16*k0^4), 0, (143*(25080*c^11 - (49346*I)*c^10*k0 - 42525*c^9*k0^2 + (20853*I)*c^8*k0^3 + 6300*c^7*k0^4 - (1176*I)*c^6*k0^5 - 126*c^5*k0^6 + (6*I)*c^4*k0^7))/(32*k0^4)}, 2, 11, 1]

View File

@ -1,2 +0,0 @@
((k^8*(-105 + 16*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 8*k^6*(-105 + 44*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 144*k^4*(-14 + 9*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5 + 320*k^2*(-6 + 5*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^7 + 640*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^9)/(5040*k^7) - (k^8*(-105 + 16*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 8*k^6*(-105 + 44*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 144*k^4*(-14 + 9*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5 + 320*k^2*(-6 + 5*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^7 + 640*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^9)/(1260*k^7) + (k^8*(-105 + 16*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 8*k^6*(-105 + 44*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 144*k^4*(-14 + 9*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5 + 320*k^2*(-6 + 5*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^7 + 640*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^9)/(840*k^7) - (k^8*(-105 + 16*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 8*k^6*(-105 + 44*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 144*k^4*(-14 + 9*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^5 + 320*k^2*(-6 + 5*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^7 + 640*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^9)/(1260*k^7) + (k^8*(-105 + 16*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 8*k^6*(-105 + 44*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 144*k^4*(-14 + 9*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^5 + 320*k^2*(-6 + 5*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^7 + 640*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^9)/(5040*k^7))/k0^4
SeriesData[k, Infinity, {(7*c^4)/k0^4, (-48*(3*c^5 - I*c^4*k0))/k0^4, (105*(28*c^6 - (18*I)*c^5*k0 - 3*c^4*k0^2))/(2*k0^4), (-320*(30*c^7 - (28*I)*c^6*k0 - 9*c^5*k0^2 + I*c^4*k0^3))/k0^4, (693*(993*c^8 - (1200*I)*c^7*k0 - 560*c^6*k0^2 + (120*I)*c^5*k0^3 + 10*c^4*k0^4))/(16*k0^4), (-64*(2025*c^9 - (2979*I)*c^8*k0 - 1800*c^7*k0^2 + (560*I)*c^6*k0^3 + 90*c^5*k0^4 - (6*I)*c^4*k0^5))/k0^4, (143*(49346*c^10 - (85050*I)*c^9*k0 - 62559*c^8*k0^2 + (25200*I)*c^7*k0^3 + 5880*c^6*k0^4 - (756*I)*c^5*k0^5 - 42*c^4*k0^6))/(32*k0^4), 0, ((-13*(c - I*k0)^12)/3072 + (13*(2*c - I*k0)^12)/768 - (13*(3*c - I*k0)^12)/512 + (13*(4*c - I*k0)^12)/768 - (13*(5*c - I*k0)^12)/3072)/k0^4}, 2, 11, 1]

View File

@ -1 +0,0 @@
6b5039445ac40a8e4dde06ee71a446ec8c971871

View File

@ -1 +0,0 @@
f5594061661eec519d31142141692d67f7b41978

View File

@ -1 +0,0 @@
a1c5acb5509b38870c8f208e65cec91b86716900

View File

@ -1,2 +0,0 @@
((k^2*(-3 + Sqrt[1 + k^2/(c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2)/(k^3*Sqrt[1 + k^2/(c - I*k0)^2]) - (5*(k^2*(-3 + Sqrt[1 + k^2/(2*c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2))/(k^3*Sqrt[1 + k^2/(2*c - I*k0)^2]) + (10*(k^2*(-3 + Sqrt[1 + k^2/(3*c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2))/(k^3*Sqrt[1 + k^2/(3*c - I*k0)^2]) - (10*(k^2*(-3 + Sqrt[1 + k^2/(4*c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2))/(k^3*Sqrt[1 + k^2/(4*c - I*k0)^2]) + (5*(k^2*(-3 + Sqrt[1 + k^2/(5*c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2))/(k^3*Sqrt[1 + k^2/(5*c - I*k0)^2]) - (k^2*(-3 + Sqrt[1 + k^2/(6*c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^2)/(k^3*Sqrt[1 + k^2/(6*c - I*k0)^2]))/k0
SeriesData[k, Infinity, {(-105*c^5)/(k*k0), 0, (945*(38*c^7 - (21*I)*c^6*k0 - 3*c^5*k0^2))/(2*k*k0), 0, (-17325*(1087*c^9 - (1134*I)*c^8*k0 - 456*c^7*k0^2 + (84*I)*c^6*k0^3 + 6*c^5*k0^4))/(16*k*k0)}, 5, 11, 1]

View File

@ -1,2 +0,0 @@
((k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4)/(k^4*Sqrt[1 + k^2/(c - I*k0)^2]*(c - I*k0)) - (5*(k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4))/(k^4*Sqrt[1 + k^2/(2*c - I*k0)^2]*(2*c - I*k0)) + (10*(k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4))/(k^4*Sqrt[1 + k^2/(3*c - I*k0)^2]*(3*c - I*k0)) - (10*(k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4))/(k^4*Sqrt[1 + k^2/(4*c - I*k0)^2]*(4*c - I*k0)) + (5*(k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4))/(k^4*Sqrt[1 + k^2/(5*c - I*k0)^2]*(5*c - I*k0)) - (k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^4)/(k^4*Sqrt[1 + k^2/(6*c - I*k0)^2]*(6*c - I*k0)))/k0
SeriesData[k, Infinity, {((-945*I)*c^5)/k + (6615*c^6)/(2*k*k0), 0, (-10395*(189*c^8 - (152*I)*c^7*k0 - 42*c^6*k0^2 + (4*I)*c^5*k0^3))/(8*k*k0), 0, (45045*(8547*c^10 - (10870*I)*c^9*k0 - 5670*c^8*k0^2 + (1520*I)*c^7*k0^3 + 210*c^6*k0^4 - (12*I)*c^5*k0^5))/(32*k*k0)}, 6, 11, 1]

View File

@ -1,2 +0,0 @@
((k^4*(-5 + Sqrt[1 + k^2/(c - I*k0)^2]) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 16*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4)/(k^5*Sqrt[1 + k^2/(c - I*k0)^2]) - (5*(k^4*(-5 + Sqrt[1 + k^2/(2*c - I*k0)^2]) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 16*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4))/(k^5*Sqrt[1 + k^2/(2*c - I*k0)^2]) + (10*(k^4*(-5 + Sqrt[1 + k^2/(3*c - I*k0)^2]) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 16*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4))/(k^5*Sqrt[1 + k^2/(3*c - I*k0)^2]) - (10*(k^4*(-5 + Sqrt[1 + k^2/(4*c - I*k0)^2]) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 16*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4))/(k^5*Sqrt[1 + k^2/(4*c - I*k0)^2]) + (5*(k^4*(-5 + Sqrt[1 + k^2/(5*c - I*k0)^2]) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 16*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4))/(k^5*Sqrt[1 + k^2/(5*c - I*k0)^2]) - (k^4*(-5 + Sqrt[1 + k^2/(6*c - I*k0)^2]) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^2 + 16*(-1 + Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^4)/(k^5*Sqrt[1 + k^2/(6*c - I*k0)^2]))/k0
SeriesData[k, Infinity, {(945*c^5)/(k*k0), 0, (-3465*(38*c^7 - (21*I)*c^6*k0 - 3*c^5*k0^2))/(2*k*k0), 0, (45045*(1087*c^9 - (1134*I)*c^8*k0 - 456*c^7*k0^2 + (84*I)*c^6*k0^3 + 6*c^5*k0^4))/(16*k*k0)}, 5, 11, 1]

View File

@ -1,2 +0,0 @@
((k^6 - 6*k^4*(-3 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 16*k^2*(3 - 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 - 32*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6)/(k^6*Sqrt[1 + k^2/(c - I*k0)^2]*(c - I*k0)) - (5*(k^6 - 6*k^4*(-3 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 16*k^2*(3 - 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 - 32*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6))/(k^6*Sqrt[1 + k^2/(2*c - I*k0)^2]*(2*c - I*k0)) + (10*(k^6 - 6*k^4*(-3 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 16*k^2*(3 - 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 - 32*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6))/(k^6*Sqrt[1 + k^2/(3*c - I*k0)^2]*(3*c - I*k0)) - (10*(k^6 - 6*k^4*(-3 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 16*k^2*(3 - 2*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 - 32*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^6))/(k^6*Sqrt[1 + k^2/(4*c - I*k0)^2]*(4*c - I*k0)) + (5*(k^6 - 6*k^4*(-3 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 16*k^2*(3 - 2*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4 - 32*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^6))/(k^6*Sqrt[1 + k^2/(5*c - I*k0)^2]*(5*c - I*k0)) - (k^6 - 6*k^4*(-3 + Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^2 + 16*k^2*(3 - 2*Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^4 - 32*(-1 + Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^6)/(k^6*Sqrt[1 + k^2/(6*c - I*k0)^2]*(6*c - I*k0)))/k0
SeriesData[k, Infinity, {(3840*c^5)/(k*k0), ((10395*I)*c^5)/k - (72765*c^6)/(2*k*k0), 0, (45045*(189*c^8 - (152*I)*c^7*k0 - 42*c^6*k0^2 + (4*I)*c^5*k0^3))/(8*k*k0), 0, (-135135*(8547*c^10 - (10870*I)*c^9*k0 - 5670*c^8*k0^2 + (1520*I)*c^7*k0^3 + 210*c^6*k0^4 - (12*I)*c^5*k0^5))/(32*k*k0)}, 5, 11, 1]

View File

@ -1,2 +0,0 @@
((k^6*(-7 + Sqrt[1 + k^2/(c - I*k0)^2]) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 + 64*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6)/(k^7*Sqrt[1 + k^2/(c - I*k0)^2]) - (5*(k^6*(-7 + Sqrt[1 + k^2/(2*c - I*k0)^2]) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 + 64*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6))/(k^7*Sqrt[1 + k^2/(2*c - I*k0)^2]) + (10*(k^6*(-7 + Sqrt[1 + k^2/(3*c - I*k0)^2]) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 + 64*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6))/(k^7*Sqrt[1 + k^2/(3*c - I*k0)^2]) - (10*(k^6*(-7 + Sqrt[1 + k^2/(4*c - I*k0)^2]) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 + 64*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^6))/(k^7*Sqrt[1 + k^2/(4*c - I*k0)^2]) + (5*(k^6*(-7 + Sqrt[1 + k^2/(5*c - I*k0)^2]) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4 + 64*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^6))/(k^7*Sqrt[1 + k^2/(5*c - I*k0)^2]) - (k^6*(-7 + Sqrt[1 + k^2/(6*c - I*k0)^2]) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^2 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^4 + 64*(-1 + Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^6)/(k^7*Sqrt[1 + k^2/(6*c - I*k0)^2]))/k0
SeriesData[k, Infinity, {(10395*c^5)/(k*k0), ((46080*I)*c^5)/k - (161280*c^6)/(k*k0), (45045*(38*c^7 - (21*I)*c^6*k0 - 3*c^5*k0^2))/(2*k*k0), 0, (-225225*(1087*c^9 - (1134*I)*c^8*k0 - 456*c^7*k0^2 + (84*I)*c^6*k0^3 + 6*c^5*k0^4))/(16*k*k0)}, 5, 11, 1]

View File

@ -1,9 +0,0 @@
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[0, k*x])/(k0^2*x), {x, 0, Infinity}, Assumptions -> n == 0 && q == 2 && κ == 5]
I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x 2 Pi -5 c x + I k0 x 2 Pi -4 c x + I k0 x 2 Pi -3 c x + I k0 x 2 Pi -2 c x + I k0 x 2 Pi -(c x) + I k0 x 2 Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi
13043905875 E Cos[-- - k x] 13043905875 E Cos[-- - k x] 65219529375 E Cos[-- - k x] 65219529375 E Cos[-- - k x] 65219529375 E Cos[-- - k x] 65219529375 E Cos[-- - k x] 2401245 E Cos[-- - k x] 2401245 E Cos[-- - k x] 12006225 E Cos[-- - k x] 12006225 E Cos[-- - k x] 12006225 E Cos[-- - k x] 12006225 E Cos[-- - k x] 3675 E Cos[-- - k x] 3675 E Cos[-- - k x] 18375 E Cos[-- - k x] 18375 E Cos[-- - k x] 18375 E Cos[-- - k x] 18375 E Cos[-- - k x] 9 E Cos[-- - k x] 9 E Cos[-- - k x] 45 E Cos[-- - k x] 45 E Cos[-- - k x] 45 E Cos[-- - k x] 45 E Cos[-- - k x] E Sqrt[--] Cos[-- - k x] E Sqrt[--] Cos[-- - k x] 5 E Sqrt[--] Cos[-- - k x] 10 E Sqrt[--] Cos[-- - k x] 10 E Sqrt[--] Cos[-- - k x] 5 E Sqrt[--] Cos[-- - k x] 418854310875 E Sin[-- - k x] 418854310875 E Sin[-- - k x] 2094271554375 E Sin[-- - k x] 2094271554375 E Sin[-- - k x] 2094271554375 E Sin[-- - k x] 2094271554375 E Sin[-- - k x] 57972915 E Sin[-- - k x] 57972915 E Sin[-- - k x] 289864575 E Sin[-- - k x] 289864575 E Sin[-- - k x] 289864575 E Sin[-- - k x] 289864575 E Sin[-- - k x] 59535 E Sin[-- - k x] 59535 E Sin[-- - k x] 297675 E Sin[-- - k x] 297675 E Sin[-- - k x] 297675 E Sin[-- - k x] 297675 E Sin[-- - k x] 75 E Sin[-- - k x] 75 E Sin[-- - k x] 375 E Sin[-- - k x] 375 E Sin[-- - k x] 375 E Sin[-- - k x] 375 E Sin[-- - k x] E Sin[-- - k x] E Sin[-- - k x] 5 E Sin[-- - k x] 5 E Sin[-- - k x] 5 E Sin[-- - k x] 5 E Sin[-- - k x]
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Integrate::idiv: Integral of ------------------------------------- - ------------------------------------------ + ------------------------------------------ - ------------------------------------------ + ------------------------------------------ - ------------------------------------------ - ---------------------------------- + -------------------------------------- - --------------------------------------- + --------------------------------------- - --------------------------------------- + --------------------------------------- + ------------------------------- - ----------------------------------- + ------------------------------------ - ------------------------------------ + ------------------------------------ - ------------------------------------ - --------------------------- + -------------------------------- - --------------------------------- + --------------------------------- - --------------------------------- + --------------------------------- + ------------------------------ - --------------------------------------- + ----------------------------------------- - ------------------------------------------ + ------------------------------------------ - ----------------------------------------- - ------------------------------------- + ------------------------------------------- - -------------------------------------------- + -------------------------------------------- - -------------------------------------------- + -------------------------------------------- + ----------------------------------- - --------------------------------------- + ---------------------------------------- - ---------------------------------------- + ---------------------------------------- - ---------------------------------------- - --------------------------------- + ------------------------------------ - ------------------------------------- + ------------------------------------- - ------------------------------------- + ------------------------------------- + ---------------------------- - --------------------------------- + ---------------------------------- - ---------------------------------- + ---------------------------------- - ---------------------------------- - -------------------------- + ------------------------------ - -------------------------------- + -------------------------------- - -------------------------------- + -------------------------------- does not converge on {0, Infinity}.
17/2 2 19/2 17/2 2 19/2 17/2 2 19/2 17/2 2 19/2 17/2 2 19/2 17/2 2 19/2 13/2 2 15/2 13/2 2 15/2 13/2 2 15/2 13/2 2 15/2 13/2 2 15/2 13/2 2 15/2 9/2 2 11/2 9/2 2 11/2 9/2 2 11/2 9/2 2 11/2 9/2 2 11/2 9/2 2 11/2 5/2 2 7/2 5/2 2 7/2 5/2 2 7/2 5/2 2 7/2 5/2 2 7/2 5/2 2 7/2 2 3/2 2 3/2 2 3/2 2 3/2 2 3/2 2 3/2 19/2 2 21/2 19/2 2 21/2 19/2 2 21/2 19/2 2 21/2 19/2 2 21/2 19/2 2 21/2 15/2 2 17/2 15/2 2 17/2 15/2 2 17/2 15/2 2 17/2 15/2 2 17/2 15/2 2 17/2 11/2 2 13/2 11/2 2 13/2 11/2 2 13/2 11/2 2 13/2 11/2 2 13/2 11/2 2 13/2 7/2 2 9/2 7/2 2 9/2 7/2 2 9/2 7/2 2 9/2 7/2 2 9/2 7/2 2 9/2 3/2 2 5/2 3/2 2 5/2 3/2 2 5/2 3/2 2 5/2 3/2 2 5/2 3/2 2 5/2
1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x
Series[Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[0, k*x])/(k0^2*x), {x, 0, Infinity}, Assumptions -> n == 0 && q == 2 && κ == 5], {k, Infinity, 10}]

View File

@ -1,2 +0,0 @@
(-10*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 20*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) - 20*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 10*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) - 2*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + k*Sqrt[Pi]*(Piecewise[{{0, k^2/k0^2 <= 1}}, (2*Sqrt[k^2 - k0^2])/(k*Sqrt[Pi])] + I*Piecewise[{{(2*k0)/(k*Sqrt[Pi]), k0^2/k^2 < 1}, {(2*(k0 - Sqrt[-k^2 + k0^2]))/(k*Sqrt[Pi]), k0^2/k^2 > 1}}, 0]))/(2*k*k0^2)
Piecewise[{{SeriesData[k, Infinity, {(-225*c^6)/(2*k0^2) + ((45*I)*c^5)/k0, 0, (-7875*c^6)/4 + (39375*c^8)/(8*k0^2) - ((5250*I)*c^7)/k0 + (525*I)/2*c^5*k0, 0, (-2205*(2025*c^10 - (3310*I)*c^9*k0 - 2250*c^8*k0^2 + (800*I)*c^7*k0^3 + 150*c^6*k0^4 - (12*I)*c^5*k0^5))/(32*k0^2)}, 6, 11, 1], (k0 <= 0 && k^2/k0^2 > 1) || k0 > 0}}, SeriesData[k, Infinity, {-k0^(-2), 0, 1/2, 0, ((5*c*(c - I*k0)^3)/8 - (5*c*(2*c - I*k0)^3)/2 + (15*c*(3*c - I*k0)^3)/4 - (5*c*(4*c - I*k0)^3)/2 + (5*c*(5*c - I*k0)^3)/8 - (5*I)/8*(c - I*k0)^3*k0 + (5*I)/4*(2*c - I*k0)^3*k0 - (5*I)/4*(3*c - I*k0)^3*k0 + (5*I)/8*(4*c - I*k0)^3*k0 - I/8*(5*c - I*k0)^3*k0)/k0^2, 0, ((-5*c*(c - I*k0)^5)/16 + (5*c*(2*c - I*k0)^5)/4 - (15*c*(3*c - I*k0)^5)/8 + (5*c*(4*c - I*k0)^5)/4 - (5*c*(5*c - I*k0)^5)/16 + (5*I)/16*(c - I*k0)^5*k0 - (5*I)/8*(2*c - I*k0)^5*k0 + (5*I)/8*(3*c - I*k0)^5*k0 - (5*I)/16*(4*c - I*k0)^5*k0 + I/16*(5*c - I*k0)^5*k0)/k0^2, 0, ((25*c*(c - I*k0)^7)/128 - (25*c*(2*c - I*k0)^7)/32 + (75*c*(3*c - I*k0)^7)/64 - (25*c*(4*c - I*k0)^7)/32 + (25*c*(5*c - I*k0)^7)/128 - (25*I)/128*(c - I*k0)^7*k0 + (25*I)/64*(2*c - I*k0)^7*k0 - (25*I)/64*(3*c - I*k0)^7*k0 + (25*I)/128*(4*c - I*k0)^7*k0 - (5*I)/128*(5*c - I*k0)^7*k0)/k0^2, 0, ((-35*c*(c - I*k0)^9)/256 + (35*c*(2*c - I*k0)^9)/64 - (105*c*(3*c - I*k0)^9)/128 + (35*c*(4*c - I*k0)^9)/64 - (35*c*(5*c - I*k0)^9)/256 + (35*I)/256*(c - I*k0)^9*k0 - (35*I)/128*(2*c - I*k0)^9*k0 + (35*I)/128*(3*c - I*k0)^9*k0 - (35*I)/256*(4*c - I*k0)^9*k0 + (7*I)/256*(5*c - I*k0)^9*k0)/k0^2}, 0, 11, 1]]

View File

@ -1,2 +0,0 @@
(-k^2 + 10*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 - 20*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 20*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 - 10*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 2*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + k^2*Sqrt[Pi]*(I*Piecewise[{{0, k^2/k0^2 <= 1}}, (2*k0*Sqrt[k^2 - k0^2])/(k^2*Sqrt[Pi])] + Piecewise[{{(k^2 + 2*k0*(-k0 + Sqrt[-k^2 + k0^2]))/(k^2*Sqrt[Pi]), k^2/k0^2 < 1}, {(1 - (2*k0^2)/k^2)/Sqrt[Pi], k^2/k0^2 > 1}}, 0]))/(2*k^2*k0^2)
SeriesData[k, Infinity, {(-15*c^5)/k0^2, 0, (-315*c^5)/2 + (1050*c^7)/k0^2 - ((1575*I)/2*c^6)/k0, 0, (-1575*(331*c^9 - (450*I)*c^8*k0 - 240*c^7*k0^2 + (60*I)*c^6*k0^3 + 6*c^5*k0^4))/(16*k0^2)}, 5, 11, 1]

View File

@ -1,2 +0,0 @@
(k^2*(-3 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 4*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 - 5*k^2*(-3 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) - 20*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 10*k^2*(-3 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 40*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 - 10*k^2*(-3 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) - 40*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 5*k^2*(-3 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 20*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 - k^2*(-3 + Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0) - 4*(-1 + Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^3)/(3*k^3*k0^2)
SeriesData[k, Infinity, {(735*c^6)/(2*k0^2) - ((105*I)*c^5)/k0, 0, (19845*c^6)/4 - (178605*c^8)/(8*k0^2) + ((17955*I)*c^7)/k0 - (945*I)/2*c^5*k0, 0, (3465*(8547*c^10 - (10870*I)*c^9*k0 - 5670*c^8*k0^2 + (1520*I)*c^7*k0^3 + 210*c^6*k0^4 - (12*I)*c^5*k0^5))/(32*k0^2)}, 6, 11, 1]

View File

@ -1,2 +0,0 @@
(-(k^2*(-2 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2) - 2*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 + 5*k^2*(-2 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 10*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 - 10*k^2*(-2 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 - 20*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 + 10*k^2*(-2 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 20*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 - 5*k^2*(-2 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 - 10*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4 + k^2*(-2 + Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^2 + 2*(-1 + Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^4)/(k^4*k0^2)
SeriesData[k, Infinity, {(105*c^5)/k0^2, 0, (945*c^5)/2 - (5985*c^7)/k0^2 + ((6615*I)/2*c^6)/k0, 0, (3465*(1087*c^9 - (1134*I)*c^8*k0 - 456*c^7*k0^2 + (84*I)*c^6*k0^3 + 6*c^5*k0^4))/(16*k0^2)}, 5, 11, 1]

View File

@ -1,2 +0,0 @@
((k^4*(-5 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 16*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5)/(5*k^5) - (k^4*(-5 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 16*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5)/k^5 + (2*(k^4*(-5 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 16*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5))/k^5 - (2*(k^4*(-5 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 16*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^5))/k^5 + (k^4*(-5 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 16*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^5)/k^5 - (k^4*(-5 + Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^3 + 16*(-1 + Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^5)/(5*k^5))/k0^2
SeriesData[k, Infinity, {(384*c^5)/k0^2, (-6615*c^6)/(2*k0^2) + ((945*I)*c^5)/k0, 0, (-72765*c^6)/4 + (654885*c^8)/(8*k0^2) - ((65835*I)*c^7)/k0 + (3465*I)/2*c^5*k0, 0, (-9009*(8547*c^10 - (10870*I)*c^9*k0 - 5670*c^8*k0^2 + (1520*I)*c^7*k0^3 + 210*c^6*k0^4 - (12*I)*c^5*k0^5))/(32*k0^2)}, 5, 11, 1]

View File

@ -1,2 +0,0 @@
((k^6 - 6*k^4*(-3 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 16*k^2*(3 - 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 - 32*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6)/(6*k^6) - (5*(k^6 - 6*k^4*(-3 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 16*k^2*(3 - 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 - 32*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6))/(6*k^6) + (5*(k^6 - 6*k^4*(-3 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 16*k^2*(3 - 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 - 32*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6))/(3*k^6) - (5*(k^6 - 6*k^4*(-3 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 16*k^2*(3 - 2*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 - 32*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^6))/(3*k^6) + (5*(k^6 - 6*k^4*(-3 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 16*k^2*(3 - 2*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4 - 32*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^6))/(6*k^6) - (k^6 - 6*k^4*(-3 + Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^2 + 16*k^2*(3 - 2*Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^4 - 32*(-1 + Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^6)/(6*k^6))/k0^2
SeriesData[k, Infinity, {(945*c^5)/k0^2, (-13440*c^6)/k0^2 + ((3840*I)*c^5)/k0, (-10395*c^5)/2 + (65835*c^7)/k0^2 - ((72765*I)/2*c^6)/k0, 0, (-15015*(1087*c^9 - (1134*I)*c^8*k0 - 456*c^7*k0^2 + (84*I)*c^6*k0^3 + 6*c^5*k0^4))/(16*k0^2)}, 5, 11, 1]

View File

@ -1,2 +0,0 @@
((k^6*(-7 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^7)/(7*k^7) - (5*(k^6*(-7 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^7))/(7*k^7) + (10*(k^6*(-7 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^7))/(7*k^7) - (10*(k^6*(-7 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^7))/(7*k^7) + (5*(k^6*(-7 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^7))/(7*k^7) - (k^6*(-7 + Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0) + 8*k^4*(-7 + 3*Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^3 + 16*k^2*(-7 + 5*Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^7)/(7*k^7))/k0^2
SeriesData[k, Infinity, {(1920*c^5)/k0^2, (-72765*c^6)/(2*k0^2) + ((10395*I)*c^5)/k0, -23040*c^5 + (291840*c^7)/k0^2 - ((161280*I)*c^6)/k0, (945945*c^6)/4 - (8513505*c^8)/(8*k0^2) + ((855855*I)*c^7)/k0 - (45045*I)/2*c^5*k0, 0, (45045*(8547*c^10 - (10870*I)*c^9*k0 - 5670*c^8*k0^2 + (1520*I)*c^7*k0^3 + 210*c^6*k0^4 - (12*I)*c^5*k0^5))/(32*k0^2)}, 5, 11, 1]

View File

@ -1,2 +0,0 @@
Simplify::time: Time spent on a transformation exceeded 300. seconds, and the transformation was aborted. Increasing the value of TimeConstraint option may improve the result of simplification.

View File

@ -1,2 +0,0 @@
Simplify::time: Time spent on a transformation exceeded 300. seconds, and the transformation was aborted. Increasing the value of TimeConstraint option may improve the result of simplification.

View File

@ -1,2 +0,0 @@
(10*k^2*(3 - 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) - 20*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 20*k^2*(-3 + 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 40*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 20*k^2*(3 - 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) - 40*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 10*k^2*(-3 + 2*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 20*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 2*k^2*(3 - 2*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) - 4*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 3*k^2*k0*Sqrt[Pi]*(Piecewise[{{0, k^2/k0^2 <= 1}}, (4*(k^2 - k0^2)^(3/2))/(3*k^2*k0*Sqrt[Pi])] + I*Piecewise[{{(-2*(2*k0*(k0 - Sqrt[-k^2 + k0^2]) + k^2*(-3 + (2*Sqrt[-k^2 + k0^2])/k0)))/(3*k^2*Sqrt[Pi]), k^2/k0^2 < 1}, {(2*(1 - (2*k0^2)/(3*k^2)))/Sqrt[Pi], k^2/k0^2 > 1}}, 0]))/(12*k^2*k0^3)
SeriesData[k, Infinity, {(75*c^6)/(2*k0^3) - ((15*I)*c^5)/k0^2, 0, (-105*(75*c^8 - (80*I)*c^7*k0 - 30*c^6*k0^2 + (4*I)*c^5*k0^3))/(8*k0^3), 0, (315*(2025*c^10 - (3310*I)*c^9*k0 - 2250*c^8*k0^2 + (800*I)*c^7*k0^3 + 150*c^6*k0^4 - (12*I)*c^5*k0^5))/(32*k0^3)}, 5, 11, 1]

Some files were not shown because too many files have changed in this diff Show More